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ABSTRACT The primitive notions of rough sets and intuitionistic fuzzy set (IFS) are general mathematical
tools having the ability to handle the uncertain and imprecise knowledge easily. EDAS (Evaluation based on
distance from average solution) method has a significant role in decision making problems, especially when
more conflicting criteria exist in multicriteria group decision making (MCGDM) problems. The aim of this
manuscript is to present intuitionistic fuzzy rough- EDAS (IFR- EDAS) method based on IF rough averaging
and geometric aggregation operators. In addition, we put forward the concept of IF rough weighted averaging
(IFRWA), IF rough ordered weighted averaging (IFROWA) and IF rough hybrid averaging (IFRHA)
aggregation operators. Furthermore, the concepts of IF rough weighted geometric (IFRWG), IF rough
ordered weighted geometric (IFROWG) and IF rough hybrid geometric (IFRHG) aggregation operators are
investigated. The basic desirable characteristics of the investigated operator are given in detail. A new score
and accuracy functions are defined for the proposed operators. Next, IFR-EDAS model for MCGDM and
their stepwise algorithm are demonstrated by utilizing the proposed approach. Finally, a numerical example
for the developed model is presented and a comparative study of the investigated models with some existing
methods are expressed broadly which show that the investigated models are more effective and useful than
the existing approaches.

INDEX TERMS Intuitionistic fuzz sets, rough sets, averaging and geometric aggregation operators, EDAS
method, MCGDM.

I. INTRODUCTION
In this competitive environment, the complexity in deci-
sion making (DM) problems grows with the intricacy of the
socio-economic environment. So, in this scenario it becomes
more problematic for a single decision expert to take an
accurate and an intelligent decision. In real life, it is inten-
sively needed to fuse a group of professional experts’ opinion
to achieve more satisfactory and useful results by utilizing
group DM models. Therefore, multicriteria group decision
making (MCGDM) has the high potential and disciplined
process to improve and evaluate multiple conflicting criteria
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in all areas of DM to get more satisfactory and feasible
DM result. In DM problems, the factual information about
some fact is usually unknown, and this uncertainty makes the
decision process more challenging and complex. To handle
this shortcoming, Zadeh [1] investigated the dominant notion
of fuzzy set whish copes this kind of imprecise information
accurately. Fuzzy set information is expressed by a mem-
bership grade (MG) and its membership value is restricted
to [0, 1]. After the inception of this concept, it has been
widely extended in different direction with both theoretical
and practical aspect. Thereafter, Atanassov [2] investigated
the prominent concept of intuitionistic fuzzy set (IFS) char-
acterized by two functions MG and nonmembership grade
(NonMG). For IFS, the sum of function values of MG and
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NonMG is restricted to the interval [0, 1]. From the inception
of IFS, it became a hot research area for scholars and studied
its hybrid structure in different direction. Xu [3] is the pioneer
to investigate the concept of IF weighted averaging (IFWA)
aggregation operators. The concept of IF weighted geomet-
ric (IFWG) operators are presented by Xu and Yager [4]. Ali
et al. [5] developed the graphical technique for ranking score
and accuracy functions. He et al. [6] investigated the concept
of IF neutral averaging operators. He et al. [7] originated
the notion of geometric interaction averaging operator and
presented its application in DM. Zhao et al. [8] initiated the
notion of generalized IFWA, generalized IFOWA, general-
ized IFHA operator and applied them to DM. By using the
notion of Einstein norm, Wang and Liu [9], [10] presented
IF Einstein weighted averaging and geometric operators.
Seikh and Mandal [11] developed the notion of IF Dombi
weighted averaging and geometric (IFDWA/G) operators and
presented its application in DM. By using concept Hamacher
t-norm and t-conorm Huang [12] developed IF Hamacher
weighted averaging, ordered weighted averaging and hybrid
averaging (IFHWA/ IFHOWA/ IFHHA) operators and orig-
inated their important characteristics which are investigated
broadly. By applying the concept of Archimedean t-norm and
t-conorm Xia et al. [13] initiated the Archimedean IFWA
and Archimedean IFWG. Yang and Chen [14] generalized
the concept of averaging operator to get three new types
of operators such as quasi-IF ordered weighted averaging
(OWA), quasi-IF Choquet order averaging and quasi-IFOWA
operator based on Dempster-Shafer belief structure. Szmidt
and Kacprzyk [15] proposed the concept of entropy measure-
ment by using IF information. Hung and Yang [16] initiated
the axiomatic definition of entropy based on the idea of prob-
ability of IFS. We et al. [17] generalized the notion of entropy
measure to get the new similarity measure by entropy under
interval valued IF information. Ye [18] developed cosine and
weighted cosine similarity measures by using IF information
and presented its application on medical diagnoses. Since its
appearance IFS has been extensively applied by scholars and
has been generalized in in various domain for solving DM
problems for detail se [19]–[21].

Pawlak [22] is the pioneer who investigated the domi-
nant notion of rough sets theory. This theory generalized the
classical set theory which deals with inexact and imprecise
knowledge. In recent era, research on rough set has made
a great progress in both the practical uses and the theory
itself. Many scholars extended the concept of rough sets in
diverse ways. Dubois and Prade [23] originated the notion
of fuzzy rough set by applying fuzzy relation instead of
crisp binary relation. The hybrid notion of IFS and rough
set play role like a bridge between these two theories, and
Cornelis et al. [24] developed the combine study of IF rough
set (IFRS). Zhou and Wu [25] developed constrictive and
axiomatic study by applying IFR approximation operators.
By using the concept of crisp and fuzzy approximation space,
Zhou and Wu [26] initiated the notion of rough IFS and IFRS

and presented their constrictive and axiomatic study in detail.
Bustince and Burillo [27] defined the concept of IF rela-
tion. Based on the concept of two universes Zhang et al. [28]
investigated the general framework of IFRS by using general
IF relation. Yun and Lee [29] developed some characteris-
tics of IFR approximation operator based on IF relation by
means of topology. Different extension of IFRS are inves-
tigated. For detail see [30]–[33]. Zhang et al. [34] devel-
oped the concepts of soft rough IFS and IF soft rough set
based on soft approximation and fuzzy soft approximation
space. Zhang [35] proposed the generalized IFRS based on
IF covering. Zhang et al. [36] extended the notion of gen-
eralized IF soft rough set based on IF soft relation. Hussain
et al. [37]–[39] presented the generalized notions of IFS by
using the concept of soft set and rough set under Pythagorean
andOrthopair fuzzy environment.Wang and Li [40] proposed
the concept of interaction power Bonferroni mean operator by
using Pythagorean fuzzy information. Wang et al. [41]–[44]
investigated several aggregation operators by using the con-
cept of trapezoidal IF number and presented its application
in decision making. By applying the concept of triangular IF
numbers Wang et al. [45]–[50] investigated different aggre-
gation operators and presented their applications in group
decision making.

Ghorabaee et al. [51] is the pioneer who investigated the
EDASmethod to solve DM problems. This method has a sig-
nificant role in DM problems especially when more conflict
criteria exist in MCGDM problems. Similar to the classical
DM methods like TOPSIS [52] (technique for order prefer-
ence by similarity to ideal solution) and VIKOR [53] (the
Serbian name is ‘Vlse Kriterijumska Optimizacija Kompro-
misno Resenje’ which means multi-criteria optimization and
compromise solution) are the top and most popular methods
which required to find out the distance from PIS and NIS.
The best alternative should have had the least distance from
PIS and farthest distance from NIS. Zeng and Xiao [54]
proposed IFOWA weighted averaging distance with TOPSIS
method and presented its basic properties. Zeng et al. [55]
investigated a new score function for IF values, and applied
two top most methods VIKOR and TOPSIS for the ranking of
the best alternative based on the developed score and accuracy
functions. Wei [56] proposed gray relation analysis (GRA)
method for MADM under IF environment. However, EDAS
method aims to calculate the best alternative from a series
of options based on PDAS (positive distance from average
solution) and NDAS (negative distance from average solu-
tion) on the basis of average solution (AvS). These two
measures indicate the difference between each solution and
the AvS. Therefore, the best one should have superior value
of PDAS and inferior value of NDAS. Ghorabaee et al. [57]
applied EDAS method by using IF information for sup-
plier selection. Zhang et al. [58] presented the picture fuzzy
weighted averaging/geometric operator under EDAS method
for MCGDM. Peng and Liu [59] developed the neutrosophic
soft decision approach with similarity measure based on
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EDAS approach. Feng et al. [60] proposed the study of EDAS
method by applying hesitant fuzzy information. Li et al [61]
presented the hybrid operator and studied its application in
DM by applying EDAS method. Liang [62] extended the
study of EDAS method to IF environment and presented it
application energy saving project. Kahraman [63] applied
the EDAS method for site selection by using IF informa-
tion. Ilieva [64] put forward the concept of EDAS method
for group MD by using interval fuzzy information. Karasan
and Kahraman [56], [66] presented EDAS method by inter-
val valued neutrosophic information. Stanujkic et al. [67]
used the concept of grey number to present EDAS method.
The concept of dynamic fuzzy approach was proposed by
Keshavarz-Ghorabaee [68] for MCGDM based on EDAS
method. Stevic et al. [69] proposed EDAS method for DM
approach by using fuzzy information. Ghorabaee [70] pro-
posed the concept of rank reversal phenomenon and analyzed
its combine study with EDAS and TOPSIS methods. From
the best of our knowledge and above analysis up-till now
no application of EDAS method with the hybrid study if
IFS and rough sets by applying IF averaging and geometric
aggregation operators is reported in IF environment. The
performance of the developed IF rough EDAS (IFR-EDAS)
method based on IFR averaging and geometric operators is
illustrated through MCGDM. Therefore, this motivates the
current research to investigate averaging and geometric oper-
ators such as IFRWA, IFROWA, IFRHA, IFRWG, IFROWG
and IFRHG aggregation operators by applying EDASmethod
for MCGD.

The remaining manuscript is designed as: Section II, con-
sisting of the basic concepts which will be helpful in onward
sections. In Section III, we have put forwarded the concept
of IFRS with a new score and accuracy functions for IFR
values (IFRV). Some basic operations for the proposed con-
cept are given which are based on IFRV. Then in Section IV,
the concept of average aggregation operators such as IFRWA,
IFROWA, IFRHA aggregation operators and their desir-
able characteristics are investigated broadly. In Section V,
the detailed study of geometric aggregation operators such as
IFRWG, IFROWG, IFRHG aggregation operators and their
desirable characteristics are developed broadly. Based on the
developed concepts in Section VI, we have presented IFR-
EDAS model for MCGDM and their stepwise algorithm are
demonstrated by utilizing the proposed approach. Finally,
in section VII, a numerical example based on EDAS method
is presented for the selection of the best small hydro power
plant (SHPP) from the different geographical sites of Pak-
istan. Furthermore, a comparative study of the investigated
models with some existing methods are expressed broadly
which show that the investigated model is more effective and
useful than the existing approaches.

II. PRELIMINARIES
Here we will put forward the notions of IFS, rough sets and
its fundamental operations and relations. These concepts will
connect our study with upcoming sections.

Definition 1 [2]: Let N be a universe set and an IFS I on
set N is given as

I = {〈℘,µI (℘), γI (℘) 〈|℘ ∈ N},

in which µI : N → [0, 1] represents the MG and γI : N →
[0, 1] represents the NonMG of an alternative ℘ ∈ N to
the set I having the condition that 0 ≤ µI (℘) + γI(℘) ≤
1. The degree of indeterminacy is given as πI(℘) = 1 −
(µI (℘)+γI(℘)) for an object ℘ ∈ N. For simplicity, I (℘) =
℘,µI (℘), γI (℘) is represented as I = (µI, γI) if there is
no confusion and is called IF value (IFV). The collections
of all subsets (IF subsets) in N will be represented by P (N)

(IFS (N), respectively).
Consider I1 =

(
µI1 , γI1

)
and I2 =

(
µI2 , γI2

)
are two IFVs.

Then the following operations are defined on them.
(i) I1 ∪ I2 =(

max
(
µI1 (℘), µI2 (℘)

)
,min

(
(γI1 (℘), γI2 (℘)

))
;

(ii) I1 ∩ I2 =(
min

(
µI1 (℘), µI2 (℘)

)
,max

(
γI1 (℘), γI2 (℘)

))
;

(iii) I1 ⊕ I2 =
(
µI1 + µI2 − µI1µI2 , γI1γI2

)
;

(iv) Ir1 ⊕ Ir2 =
(
µI1µI2 , γI1 + γI2 − γI1γI2

)
;

(v) I1 ≤ I2 if µI1 (℘) ≤ µI2 (℘) , γI1 (℘) ≥ γI2 (℘) for all
℘ ∈ N;

(vi) I
c
1 =

(
γI1 , µI1

)
where Ic1 represents the complement of

I1;
(vii) αI1 =

(
1−

(
1− µI1

)α
, γ α

I1

)
for α ≥ 1;

(viii) I
α
1 =

(
µα

I1
, 1− (1− γI1 )

α
)
for α ≥ 1

Definition 2 [25]: Let N be a universal set and I ∈ N×N

be crisp relation. Then
(i) I is reflexive if (℘, ℘) ∈ I, ∀℘ ∈ N;
(ii) I is symmetric if ∀℘, c ∈ N, (℘, c) ∈ I then (c, ℘) ∈ I;
(iii) I is transitive if ∀℘, c, d ∈ N, (℘, c) ∈ I and (c, d) ∈ I,

then (℘, d) ∈ I.
Definition 3 [25]:Consider a universal setN and I ∈ N×N

be any arbitrary relation on set N. Now defined a set valued
mapping I∗ : N→ P (N) as:

I∗ (℘) = {c ∈ N| (℘, c) ∈ I}, for ℘ ∈ N

where I∗ (℘) is known as successor neighborhood of an
object ℘ w.r.t I. The pair (N, I) is said to be crisp approxima-
tion space. Now for anyK ⊆ N, the lower and upper approx-
imation ofK w.r.t approximation space (N, I) is denoted and
defined as:

I (K) =
{
℘ ∈ N|I∗ (℘) ⊆ K

}
I (K) =

{
℘ ∈ N|I∗ (℘) ∩K 6= ∅

}
Therefore,

(
I (K), I (K)

)
is known as rough set and

I (K), I (K) : P (N) → P (N) are upper and lower approxi-
mation operators.
Definition 4 [25]: Consider N is a universal set and I ∈

IFS (N ×N) be IF relation. Then
(i) I is reflexive if µI (℘, ℘) = 1 and γI (℘, ℘) = 0,
∀ ℘ ∈ N;
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TABLE 1. IF relation from set N to N.

(ii) I is symmetric if ∀ (℘, c) ∈ N × N, µI (℘, c) =
µI (c, ℘) and γI (℘, c) = γI (c, ℘);

(iii) I is transitive if ∀ (℘, d) ∈ N × N, µI (℘, d) ≥∨
c∈N [µI (℘, c) ∧ µI (c, d)] and

γI (℘, d) =
∧

c∈N [γI (℘, c) ∧ γI (c, d)].

III. CONSTRUCTION OF INTUITIONISTIC FUZZY
ROUGH SET
Here we will develop the hybrid notion of rough sets and IFS
to obtained the notion of IF rough sets and initiate the new
score and accuracy functions and also put forward its basic
operations in detailed.
Definition 5: Consider N be a universal set and for any

subset I ∈ IFS (N ×N) is said to be an IF relation. Then
the pair (N, I) is said to be IF approximation space. Now for
any K ⊆ IFS (N), then the upper and lower approximations
ofK w.r.t IF approximation space (N, I) are two IFSs, which
is denoted by I (K) and I (K) and is defined as:

I (K) =
{
℘,µI(K) (℘), γI(K) (℘) |℘ ∈ N

}
I (K) =

{
℘,µI(K) (℘), γI(K) (℘) |℘ ∈ N

}
,

where

µI(K) (℘) =
∨
c∈N

[µI (℘, c) ∨ µK (c)],

γI(K) (℘) =
∧
c∈N

[γI (℘, c) ∧ γK (c)]

µI(K) (℘) =
∧
c∈N

[µI (℘, c) ∧ µK (c)],

γI(K) (℘) =
∨
c∈N

[γI (℘, c) ∨ γK (c)]

such that 0 ≤ µI(K) (℘) + γI(K) (℘) ≤ 1 and
q ≤ µI(K) (℘) + γI(K) (℘) ≤ 1. As I (K)

and I (K) are IFSs, so
℘

I (K), I (K) : IFS (N) →
IFS (N) are upper and lower approximation opera-
tors. Then the pair I (K) =

(
I (K), I (K)

)
={

℘,
(
µI(K) (℘), γI(K) (℘)

)
,
(
µI(K) (℘), γI(K)

)
|℘∈K

}
is

known as IF rough set. For simplicity I (K) ={
℘,
(
µI(K) (℘), γI(K) (℘)

)
,
(
µI(K) (℘), γI(K)

)
|℘∈K

}
is

represented as I (K)=
((
µ, γ

)
, (µ, γ )

)
known as IFRV.

Now to present the counter example for better explanation
of the above concept of IFRS.
Example 1: Suppose N = {℘1, ℘2, ℘3, ℘4} be an arbi-

trary set and (N, I) be IF approximation space with I ∈

IFS (N ×N) be IF relation as given in Table 1.
Now a decision expert presents the optimum normal deci-

sion object K which is an IFS, that is:

K = {〈℘1, 0.8, 0.2〉, 〈℘2, 0.4, 0.3〉,

〈℘3, 0.5, 0.4〉, 〈℘4, 0.7, 0.25〉}

Now to determine I (K) and I (K), we have

µI(K) (℘1)

=

∨
c∈N

[µI (℘, c) ∨ µK (c)]

= (0.6 ∨ 0.8) ∨ (0.7 ∨ 0.4) ∨ (0.5 ∨ 0.5) ∨ (0.4 ∨ 0.7)

= 0.8

γI(K) (℘1)

=

∧
c∈N

[γI (℘, c) ∧ γK (c)]

= (0.1 ∧ 0.2) ∧ (0.2 ∧ 0.3) ∧ (0.3 ∧ 0.4) ∧ (0.3 ∧ 0.25) = 0.1

Likewise, we get the others values:
µI(K) (℘2) = 0.9, γI(K) (℘2) = 0.1, µI(K) (℘3) = 0.82,

γI(K) (℘3) = 0.15, µI(K) (℘4) = 0.86, γI(K) (℘4) = 0.13
Similarly,
µI(K) (℘1) = 0.4, γI(K) (℘1) = 0.4, µI(K) (℘2) =

0.4, γI(K) (℘2) = 0.4, µI(K) (℘3) = 0.4, γI(K) (℘3) =

0.4, µI(K) (℘4) = 0.4, γI(K) (℘4) = 0.4
Thus the upper and lower IF rough approximation opera-

tors are;

I (K) =

{
〈℘1, 0.8, 0.1〉, 〈℘2, 0.9, 0.1〉,
〈℘3, 0.82, 0.15〉, 〈℘4, 0.86, 0.13〉

}
I (K) =

{
〈℘1, 0.4, 0.4〉, 〈℘2, 0.4, 0.4〉, 〈℘3, 0.4, 0.4〉,

〈℘4, 0.4, 0.4〉

}
Therefore,

I (K)

=

(
I (K), I (K)

)
=

{
〈℘1, (0.4, 0.4), (0.6, 0.2)〉, 〈℘2, (0.4, 0.4), (0.4, 0.1)〉,
〈℘3, (0.4, 0.4), (0.6, 0.2)〉, 〈℘4, (0.4, 0.4), (0.8, 0.2)〉

}
.
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Definition 6: Let I (K1) =
(
I (K1), I (K1)

)
and I (K2) =(

I (K2), I (K2)
)
be two IFRSs. Then the following operation

are defined on them.

(i) I (K1) ∪ I (K2) =
{(
I (K1) ∪ I (K2)

)
,(

I (K2) ∪ I (K2)
)}

;

(ii) I (K1) ∩ I (K2) =
{(
I (K1) ∩ I (K2)

)
,(

I (K1) ∩ I (K2)
)}

;

(iii) I (K1)⊕ I (K2) =
{(
I (K1)⊕ I (K2)

)
,(

I (K1)⊕ I (K2)
)}

;

(iv) I (K1)⊗ I (K2) =
{(
I (K1)⊗ I (K2)

)
,(

I (K1)⊗ I (K2)
)}

;

(v) I (K1) ⊆ I (K2) =
(
I (K1) ⊆ I (K2)

)
and(

I (K1) ⊆ I (K2)
)
;

(vi) αI (K1) =
(
αI (K1), αI (K1)

)
for α ≥ 1;

(vii) (I (K1))
α
=

((
I (K1)

)α
,
(
I (K1)

)α)
for α ≥ 1

(viii) I (K1)
c
=

(
I (K1)

c , I (K1)
c
)
where I (K1)

c and

I (K1)
c represents the complement of IF rough approx-

imation operators I (K1) and I (K1), i.e. I (K1)
c
=(

γij, µij

)
(ix) I (K1) = I (K2) iff I (K1) = I (K2) and I (K1) =

I (K2)

To compare two or more IFRVs, we use score function for
their comparison. Greater the score value of IFRV superior
that value is and inferior the score value smaller that IFRV is.
If the score values are equal then we use accuracy function.
Definition 7: The score function for IFRV I (K) =(
I (K), I (K)

)
=

((
µ, γ

)
, (µ, γ )

)
is given as:

S (I (K)) =
1
4

(
2+ µ+ µ− γ − γ

)
, S (I (K)) ∈ [0, 1].

Let I (K) =
(
I (K), I (K)

)
=

((
µ, γ

)
, (µ, γ )

)
be a

IFRV, then the accuracy function for I (K) is given below:

Ac (I (K)) =
1
4

(
µ+ µ+ γ + γ

)
, Ac (I (K)) ∈ [0, 1].

Let I (K1) =

(
I (K1), I (K1)

)
and I (K2) =(

I (K2), I (K2)
)
be two IFRVs. Then

(i) If S (I (K1)) > S (I (K2)), then I (K1) > I (K2)

(ii) If S (I (K1)) < S (I (K2)), then I (K1) < I (K2)

(iii) If S (I (K1)) = S (I (K2)), then

(a) If Ac (I (K1)) > Ac (I (K2)), then I (K1) >

I (K2)

(b) If Ac (I (K1)) < Ac (I (K2)), then I (K1) <

I (K2)

(c) If Ac (I (K1)) = Ac (I (K2)), then I (K1) =

I (K2)

Proposition 1: Suppose (N, I) be IF approximation
space. Let I (K1) =

(
I (K1), I (K1)

)
and I (K2) =(

I (K2), I (K2)
)
be any two IFRSs over N. The following

results are holds:
(i) ∼ (∼ I (K1)) = K1, where ∼ I (K1) is the comple-

ment of I (K1);
(ii) I (K1) ∪ I (K2) = I (K2) ∪ I (K1) and I (K1) ∩

I (K2) = I (K2) ∩ I (K1)

(iii) ∼ (I (K1) ∪ I (K2)) = (∼ I (K1)) ∩ (∼ I (K2));
(iv) ∼ (I (K1) ∩ I (K2)) = (∼ I (K1)) ∪ (∼ I (K2));
(v) If K1 ⊆ K2, then I (K1) ⊆ I (K2);
(vi) I (K1 ∪K2) ⊇ I (K1) ∪ I (K2);
(vii) I (K1 ∩K2) ⊆ I (K1) ∩ I (K2)

IV. INTUITIONISTIC FUZZY ROUGH AVERAGING
AGGREGATION OPERATOR
This section of manuscript consists of the notion of IF rough
aggregation operators by embedding the notion of rough sets
and IF averaging operators to get aggregation concepts of
IFRWA, IFROWA and IFRHA operators and also presented
their basic properties.

A. INTUITIONISTIC FUZZY ROUGH WEIGHTED
AVERAGING OPERATOR
This subsection is devoted for the detailed study of IFRWA
aggregation operators and its desirable characteristics.
Definition 8: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight

vector ζ = (ζ1, ζ2, . . . , ζn)
T such that

∑n
i=1 ζi = 1 and

0 ≤ ζi ≤ 1. The IFRWA operator is determined as:

IFRWA (I (K1), I (K2), . . . , I (Kn))

=

(
⊕
n
i=1 ζiI (Ki),⊕

n
i=1 ζiI (Ki)

)
Based on above definition the aggregated result for IFRWA

operator is illustrated in Theorem 1.
Theorem 1: Let the collection I (Ki) =

(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vectors ζ =
(ζ1, ζ2, . . . , ζn)

T . Then IFRWA operator is determined
as:

IFRWA (I (K1), I (K1), . . . , I (Kn))

=

[
⊕
n
i=1 ζiI (Ki),⊕

n
i=1 ζiI (Ki)

]

=


(
1−

n∏
i=1

(
1− µi

)ζi
,

n∏
i=1

(
γi

)ζi)
,(

1−
n∏
i=1

(1− µi)ζi ,
n∏
i=1

(γi)
ζi

)
.

Proof: By using mathematical induction to get the
required proof.
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As by defined operational law, we have

I (K1)⊕ I (K2)

=

[
I (K1)⊕ I (K2), I (K1)⊕ I (K2)

]
=

[(
µ1 + µ2 − µ1 µ2, γ1 γ2

)
, (µ1 + µ2 − µ1 µ2, γ1 γ2)

]
and

αI (K1)

=

(
αI (K1), αI (K1)

)
=

[(
1−

(
1− µ1

)α
, γ1

α
)
,
(
1− (1− µ1)

α , γ1
α
)]

Suppose n = 2, then

IFRWA (I (K1), I (K2))

=

[
⊕

2
i=1 ζiI (Ki),⊕

2
i=1 ζiI (Ki)

]

=


(
1−

2∏
i=1

(
1− µi

)ζi
,

2∏
i=1

γi
ζi

)
,(

1−
2∏
i=1

(1− µi)ζi ,
2∏
i=1

γi
ζi

)


The result is true for n = 2
Now suppose that result hold for n = k

IFRWA (I (K1), I (K2), . . . , I (Kk))

=


(
1−

k∏
i=1

(
1− µi

)ζi
,

k∏
i=1

γi
ζi

)
,(

1−
k∏
i=1

(1− µi)ζi ,
k∏
i=1

γi
ζi

)


Next we show that the result is true for n = k + 1, we
have

IFRWA [(I (K1), I (K2), . . . , I (Kk)), I (Kk+1)]

=


{(
⊕
k
i=1 ζiI (Ki)

)
⊕
(
ζk+1I (Kk+1)

)}
,{(

⊕
k
i=1 ζiI (Ki)

)
⊕

(
ζk+1I (Kk+1)

)}


=


(
1−

k+1∏
i=1

(
1− µi

)ζi
,

k+1∏
i=1

γi
ζi

)
,(

1−
k+1∏
i=1

(1− µi)ζi ,
k+1∏
i=1

γij
ζi

)


Thus the required result hold for n = k + 1. Hence the
required result is true for all n ≥ 1.
From the above analysis I (K) and I (K) are IFRVs. So,

by Definition 6, ⊕ni=1 ζiI (Ki) and ⊕ni=1 ζiI (Ki) are also
IFRVs. Therefore IFRWA (I (K1), . . . , I (Kn)) is also a IFRV
under IF approximation space (N, I).

Example 2: Consider a set K ⊆ N ={
(℘1, 〈0.5, 0.3〉, 〈0.2, 0.1〉), (℘2, 〈0.7, 0.1〉, 〈0.4, 0.25〉),

(℘3, 〈0.45, 0.13〉, 〈0.8, 0.16〉)

}
with weight vector ζ = (0.32, 0.35, 0.33)T .

IFRWA (I (K1), I (K2), I (K3))

=

[
⊕

3
i=1 ζiI (Ki),⊕

3
i=1 ζiI (Ki)

]

=




(
1− (1− 0.5)0.32 (1− 0.7)0.35 (1− 0.45)0.33

)
,(

0.30.32 × 0.10.35 × 0.130.33
)

,
(
1− (1− 0.5)0.32 (1− 0.7)0.35 (1− 0.45)0.33

)
,(

0.30.32 × 0.10.35 × 0.130.33
)




= [〈0.568498, 0.154982〉, 〈0.542194, 0.160931〉].

Some important properties of IFRWA operator is initiated
in Theorem 2.
Theorem 2: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vec-

tors ζ = (ζ1, ζ2, . . . , ζn)
T with

∑n
i=1 ζi = 1 and 0 ≤ ζi ≤

1. Then some important properties of IFRWA operator are
described as:
(i) (Idempotency): If I (Ki) = P (K) for all i =

1, 2, . . . , n where P (K) =
(
P (K),P (K)

)
=((

d, e
)
,
(
d, e

))
. Then

IFRWA (I (K1), I (K2), . . . , I (Kn)) = P (K).
(ii) (Boundedness): Let (I (K))− =(

min
i

I (Ki),max
i

I (Ki)

)
and (I (K))+ =(

max
i

I (Ki),min
j

I (Ki)

)
. Then

(I (K))− ≤ IFRWA (I (K1), I (K2), . . . , I (Kn)) ≤

(I (Ki))
+ .

(iii) (Monotonicity): Let P (Li) =
(
P (Li),P (Li)

)
(i =

1, 2, . . . , n) be another collection of IFRVs such that
P (Li) ≤ I (Ki) and P (Li) ≤ I (Ki). Then
IFRWA (P (L1),P (L2), . . . ,P (Ln)) ≤

IFRWA (I (K1), I (K2), . . . , I (Kn)).
(iv) (Shift invariance): Consider another IFRV P (L) =(

P (L),P (L)
)
=
((
d, e

)
,
(
d, e

))
. Then

IFRWA
(
I (K1)⊕ P (L), I (K2)⊕ P (L), . . . ,

I (Kn)⊕ P (L)

)
=

IFRWA (I (K1), I (K2), . . . , I (Kn))⊕ P (L).
(v) (Homogeneity): For any real number λ > 0;

IFRWA (λI (K1), λI (K2), . . . , λI (Kn)) =

λIFRWA (I (K1), I (K2), . . . , I (Kn)).
(vi) (Commutativity): Let I′ (Ki) =

(
I′ (Ki), I′ (Ki)

)
(i = 1, 2, . . . , n) be any permutation of I (Ki) =(
I (Ki), I (Ki)

)
. Then

IFRWA (I (K1), I (K2), . . . , I (Kn))

= IFRWA
(
I′ (K1), I

′ (K2), . . . , I
′ (Kn)

)
.
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Proof: (i) (Idempotency) As I (Ki) = P (K) (for
all i = 1, 2, . . . , n), where P (K) =

(
P (K),P (K)

)
=((

d, e
)
,
(
d, e

))
IFRWA (I (K1), . . . , I (Kn))

=

[
⊕
n
i=1 ζiI (Ki),⊕

n
i=1 ζiI (Ki)

]

=


(
1−

k∏
i=1

(
1− µi

)ζi
,

k∏
i=1

γi
ζi

)
,(

1−
k∏
i=1

(1− µi)ζi ,
k∏
i=1

γi
ζi

)


For all i, I (Ki) = P (K) =
(
P (K),P (K)

)
=((

d, e
)
,
(
d, e

))
. Therefore,

=


(
1−

k∏
i=1

(
1− d

)ζi , k∏
i=1

eζi
)
,(

1−
k∏
i=1

(
1− d

)ζi
,

k∏
i=1

eζi
)


=
[(
1−

(
1− d

)
, e
)
,
(
1−

(
1− d

)
, e
)]

=

(
P (K),P (K)

)
= P (K)

Hence,

IFRWA (I (K1), . . . , I (Kn)) = P (K)

(ii) (Boundedness) As
(
I (K)

)−
=[(

min
i

{
µi

}
,max

i

{
γi

})
,

(
min
i
{µi},max

i
{γi}

)]
(
I (K)

)+
=

[(
max
i

{
µi

}
,min

i

{
γi

})
,(

max
i
{µi},min

i
{γi}

)]
and I (Ki) =

[(
µi, γi

)
, (µi, γi)

]
.

To prove that

(I (K))− ≤ IFRWA (I (K1), I (K2), . . . , I (Kn))

≤ (I (K))+

Since for each i = 1, 2, . . . , n, we have

min
i

{
µi

}
≤ µi ≤ max

i

{
µi

}
⇔ 1−max

i

{
µi

}
≤ 1− µi ≤ 1−min

i

{
µi

}
⇔

n∏
i=1

(
1−max

i

{
µi

})ζi
≤

n∏
i=1

(
1− µi

)ζi
≤

n∏
i=1

(
1−min

i

{
µi

})ζi
⇔

(
1−max

i

{
µi

})
≤

n∏
i=1

(
1− µi

)ζi
≤

(
1−min

i

{
µi

})

⇔ 1−
(
1−min

i

{
µi

})
≤ 1−

n∏
i=1

(
1− µi

)ζi
≤ 1−

(
1−max

i

{
µi

})
Hence

min
i

{
µi

}
≤ 1−

n∏
i=1

(
1− µi

)ζi
≤ max

i

{
µi

}
(1)

Next for each i = 1, 2, . . . , n, we have

min
i

{
γi

}
≤ γi ≤ max

i

{
γi

}
⇔

n∏
i=1

(
min
i

{
γi

})ζi
≤

n∏
i=1

(
γi

)ζi
≤

n∏
i=1

(
max
i

{
γi

})ζi
this implies that

min
i

{
γi

}
≤

n∏
i=1

(
γi

)ζi
≤ max

i

{
γi

}
(2)

Similarly, we can show that

min
i
{µi} ≤ 1−

n∏
i=1

(1− µi)ζi ≤ max
i
{µi} (3)

and

min
i
{γi} ≤

n∏
i=1

(γi)
ti ≤ max

i
{γi} (4)

So from Eqs. (1), (2), (3) and (4) we have

(I (K))− ≤ IFRWA (I (K1), I (K2), . . . , I (Kn))

≤ (I (Ki))
+ .

(iii) Monotonicity: Since P (Li) =
(
P (Li),P (Li)

)
=((

di, ei
)
,
(
di, ei

))
and I (Ki) =

(
I (Ki), I (Ki)

)
To show that

P (Li)≤I (Ki) and P (Li)≤I (Ki) (for i=1, 2, . . . , n), so

di ≤ µi ⇒ 1− µi ≤ 1− di ⇒
n∏
i=1

(
1− µi

)ζi
≤

n∏
i=1

(
1− di

)ζi
⇒ 1−

n∏
i=1

(
1− di

)ζi
≤ 1−

n∏
i=1

(
1− µi

)ζi
(5)

Next

ei ≥ γi ⇒
n∏
i=1

eiζi ≥
n∏
i=1

γi
ζi (6)

Similarly, we can show that

1−
n∏
i=1

(
1− di

)ζi
≤ 1−

n∏
i=1

(1− µi)ζi (7)
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n∏
i=1

(
dij
)ζi
≥

n∏
i=1

(
γij
)ζi (8)

Hence from Eqs. (5), (6), (7) and (8), we get

P (Li) ≤ I (Ki) and P (Li) ≤ I (Ki)

Therefore,

IFRWA (P (L1),P (L2), . . . ,P (Ln))

≤ IFRWA (I (K1), I (K2), . . . , I (Kn))

(iv): (Shift Invariance) As P (L) =
(
P (L),P (L)

)
=((

d, e
)
,
(
d, e

))
is any IFRV and I (Ki) =

(
I (Ki), I (Ki)

)
=((

µi, γi

)
, (µi, γi)

)
are the collection of IFRVs, so

I (K1)⊕ P (L) =
[
I (K1)⊕ P (L), I (Ki)⊕ P (L)

]
As

=

((
1−

(
1−µ1

) (
1−d

)
, γ1 e

)
, (1−(1−µ1) (1−e), γ1 e)

)
Therefore,

IFRWA (I (K1)⊕P (L), I (K2)⊕P (L), . . . , I (Kn)⊕P (L))

=

[
⊕
n
i=1 ζi

(
I (Ki)⊕ P (K)

)
,⊕ni=1 ζi

(
I (Ki)⊕ P (K)

)]

=


(
1−

n∏
i=1

(
1− µi

)ζi (
1− d

)ζi , n∏
i=1

γi
ζieζi

)
,(

1−
n∏
i=1

(1− µi)ζi
(
1− d

)ζi
,

n∏
i=1

γi
ζieζi

)


=


(
1−

(
1− d

) n∏
i=1

(
1− µi

)ζi
, e

n∏
i=1

γi
ζi

)
,(

1−
(
1− d

) n∏
i=1

(1− µi)ζi , e
n∏
i=1

γi
ζi

)


=


{(

1−
n∏
i=1

(
1− µi

)ζi
,

n∏
i=1

γi
ζi

)
⊕
(
d, e

)}
,{(

1−
n∏
i=1

(1− µi)ζi ,
n∏
i=1

γi
ζi

)
⊕
(
d, e

)}


=


(
1−

n∏
i=1

(
1− µi

)ζi
,

n∏
i=1

γi
ζi

)
,(

1−
n∏
i=1

(1− µi)ζi ,
n∏
i=1

γi
ζi

)
⊕ [(d, e), (d, e)]

= IFRWA (I (K1), I (K2), . . . , I (Kn))⊕ P (L)

Therefore, proved is completed.
(v): (Homogeneity) For a real number λ > 0 and I (Ki) =(
I (Ki), I (Ki)

)
be a IFRVs.

As

λI (Ki) =
(
λI (Ki), λI (Ki)

)
=

[(
1−

(
1− µ1

)λ
, γ1

λ

)
,
(
1− (1− µ1)

λ , γ1
λ
)]

Now

IFRWA (λI (K1), λI (K2), . . . , λI (Kn))

=


(
1−

n∏
i=1

(
1− µi

)λζi
,

n∏
i=1

γi
λζi

)
,(

1−
n∏
i=1

(1− µi)λζi ,
n∏
i=1

γi
λζi

)


=



1−
(

n∏
i=1

(
1− µi

)ζi)λ
,

(
n∏
i=1

γi
ζi

)λ,1−
(

n∏
i=1

(1− µi)ζi
)λ
,

(
n∏
i=1

γi
ζi

)λ


= λIFRWA (I (K1), I (K2), . . . , I (Kn))

Hence, we get the required proof
(vi). Let

IFRWA (I (K1), I (K1), . . . , I (Kn))

=

[
⊕
n
i=1 ζiI (Ki),⊕

n
i=1 ζiI (Ki)

]

=


(
1−

n∏
i=1

(
1− µi

)ζi
,

n∏
i=1

(
γi

)ζi)
,(

1−
n∏
i=1

(1− µi)ζi ,
n∏
i=1

(γi)
ζi

)
,

Since
(
I′ (K1), I

′ (K2), . . . , I
′ (Kn)

)
is any permutation

of (I (K1), I (K2), . . . , I (Kn)), then we have I (Ki) =

I′ (Ki) (i = 1, 2, . . . , n)

=


(
1−

n∏
i=1

(
1− µ′i

)ζi
,

n∏
i=1

(
γ ′i

)ζi)
,(

1−
n∏
i=1

(
1− µ′i

)ζi
,

n∏
i=1

(
γ ′i

)ζi)


=

[
⊕
n
i=1 ζiI

′ (Ki),⊕
n
i=1 ζiI

′ (Ki)
]

= IFRWA
(
I′ (K1), I

′ (K2), . . . , I
′ (Kn)

)
.

B. INTUITIONISTIC FUZZY ROUGH ORDERED WEIGHTED
AVERAGING OPERATOR
In this subsection we put forward the concept of IFROWA
operator and proposed its fundamental properties of the
developed operators.
Definition 9: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight

vector ζ = (ζ1, ζ2, . . . , ζn)
T such that

∑n
i=1 ζi = 1 and

0 ≤ ζi ≤ 1. The IFROWA operator is determined as:

IFROWA (I (K1), I (K2), . . . , I (Kn))

=

(
⊕
n
i=1 ζiIδ (Ki),⊕

n
i=1 ζiIδ (Ki)

)
Based on above definition 9, the aggregated result for

IFROWA operator is illustrated in Theorem 3.
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Theorem 3: Let the collection I (Ki) =
(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vectors ζ =
(ζ1, ζ2, . . . , ζn)

T . Then IFROWA operator is determined as:

IFROWA (I (K1), I (K1), . . . , I (Kn))

=

[
⊕
n
i=1 ζiIδ (Ki),⊕

n
i=1 ζiIδ (Ki)

]

=


(
1−

n∏
i=1

(
1− µδi

)ζi
,

n∏
i=1

(
γδi

)ζi)
,(

1−
n∏
i=1

(1− µδi)ζi ,
n∏
i=1

(γδi)
ζi

)
,

where Iδ (Ki) =
(
Iδ (Ki), Iδ (Ki)

)
represents the largest

value of permutation from the collection of IFRVs.
Proof: Follow from Theorem 1

Some important properties of IFROWA operator is illus-
trated in Theorem 4.
Theorem 4: Consider I (Ki) =

(
I (Ki), I (Ki)

)
(i =

1, 2, . . . , n) be the collection of IFRVs with weight vectors
ζ = (ζ1, ζ2, . . . , ζn)

T with
∑n

i=1 ζi = 1 and 0 ≤ ζi ≤ 1. Then
some important properties of IFROWAoperator are described
as:

(i) (Idempotency): If I (Ki) = P (K) for alli =
1, 2, . . . , n where P (K) =

(
P (K),P (K)

)
=((

d, e
)
,
(
d, e

))
. Then

IFROWA (I (K1), I (K2), . . . , I (Kn)) = P (K) .

(ii) (Boundedness): Let (I (K))− =(
min
i

I (Ki),max
i

I (Ki)

)
and (I (K))+ =(

max
i

I (Ki),min
j

I (Ki)

)
. Then

(I (K))− ≤ IFROWA (I (K1), I (K2), . . . , I (Kn)) ≤

(I (Ki))
+ .

(iii) (Monotonicity): Let P (Li) =
(
P (Li),P (Li)

)
(i = 1, 2, . . . , n) be another collection of IFRVs such
that P (Li) ≤ I (Ki) and P (Li) ≤ I (Ki). Then
IFROWA (P (L1),P (L2), . . . ,P (Ln))

≤ IFROWA (I (K1), I (K2), . . . , I (Kn)) .

(iv) (Shift invariance): Consider another IFRV P (L) =(
P (L),P (L)

)
=
((
d, e

)
,
(
d, e

))
Then

IFROWA
(
I (K1)⊕ P (L), I (K2)⊕ P (L), . . . ,

I (Kn)⊕ P (L)

)
=

IFROWA (I (K1), I (K2), . . . , I (Kn))⊕ P (L).
(v) (Homogeneity): For any real number λ > 0;

IFROWA (λI (K1), λI (K2), . . . , λI (Kn)) =

λIFROWA (I (K1), I (K2), . . . , I (Kn))

(vi) (Commutativity): Let I′ (Ki) =
(
I′ (Ki), I′ (Ki)

)
(i = 1, 2, . . . , n) be any permutation of I (Ki) =(
I (Ki), I (Ki)

)
. Then

IFROWA (I (K1), I (K2), . . . , I (Kn)) =

IFROWA
(
I′ (K1), I

′ (K2), . . . , I
′ (Kn)

)
.

Proof: Proof follows from Theorem 2.

C. INTUITIONISTIC FUZZY ROUGH HYBRID AVERAGING
OPERATOR
In this subsectionwewill originate the notion of IFRHAoper-
ator, which weight both the value and their ordered position
of an IF arguments at the same time. The important properties
of the initiated operator presented in detail.
Definition 10: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight

vector w = (w1,w2, . . . ,wn)
T such that

∑n
i=1 wi = 1

and 0 ≤ wi ≤ 1. Let ζ = (ζ1, ζ2, . . . , ζn)
T such that∑n

i=1 ζi = 1 and 0 ≤ ζi ≤ 1 be the associated weight vector
of the given collection of IFRVs. Then IFRHA operator is
determined as:

IFRHA (I (K1), I (K2), . . . , I (Kn))

= ⊕
n
i=1 ζiÏδ (Ki)

=

[
⊕
n
i=1 ζiÏδ (Ki),⊕

n
i=1 ζiÏδ (Ki)

]
Based on above definition 10, the aggregated result for

IFRHA operator is illustrated in Theorem 5.
Theorem 5: Let the collection I (Ki) =

(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vector w =

(w1,w2, . . . ,wn)
T such that

∑n
i=1 wi = 1 and 0 ≤ wi ≤ 1.

Let ζ = (ζ1, ζ2, . . . , ζn)
T such that

∑n
i=1 ζi = 1 and 0 ≤

ζi ≤ 1 be the associated weight vector of the given collection
of IFRVs. Then IFRHA operator is determined as:

IFRHA (I (K1), I (K1), . . . , I (Kn))

= ⊕
n
i=1 ζiÏδ (Ki) =

[
⊕
n
i=1 ζiÏδ (Ki),⊕

n
i=1 ζiÏδ (Ki)

]

=


(
1−

n∏
i=1

(
1− µ̈δi

)ζi
,

n∏
i=1

(
γ̈δi

)ζi)
,(

1−
n∏
i=1

(
1− µ̈δi

)ζi
,

n∏
i=1

(
γ̈δi
)ζi)

,

where Ïδ (Ki) = nwiI (Ki) =
(
nwiI (Ki), nwiI (Ki)

)
repre-

sents the largest value of permutation from the collection of
IFRVs and n denotes the balancing coefficient.

Proof: Follow from Theorem 1.

Especially, if w =
(
1
n ,

1
n , . . . ,

1
n

)T
, then the developed

IFRHA operator reduced to IFROWA operator.
Some important properties of IFRHAoperator is illustrated

in Theorem 6.
Theorem 6: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vec-

tors w = (w1,w2, . . . ,wn)
T such that

∑n
i=1 wi = 1 and

0 ≤ wi ≤ 1. Let ζ = (ζ1, ζ2, . . . , ζn)T such that
∑n

i=1 ζi = 1
and 0 ≤ ζi ≤ 1 be the associated weight vector of the
given collection of IFRVs. Then some important properties
of IFRHA operator are described as:
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(i) (Idempotency): If I (Ki) = P (K) for all i =
1, 2, . . . , n where P (K) =

(
P (K),P (K)

)
=((

d, e
)
,
(
d, e

))
. Then

IFRHA (I (K1), I (K2), . . . , I (Kn)) = P (K) .

(ii) (Boundedness): Let (I (K))− =(
min
i

I (Ki),max
i

I (Ki)

)
and (I (K))+

=

(
max
i

I (Ki),min
j

I (Ki)

)
. Then

(I (K))− ≤ IFRHA (I (K1), I (K2), . . . , I (Kn)) ≤

(I (Ki))
+.

(iii) (Monotonicity): Let P (Li) =
(
P (Li),P (Li)

)
(i =

1, 2, . . . , n) be another collection of IFRVs such that
P (Li) ≤ I (Ki) and P (Li) ≤ I (Ki). Then
IFRHA (P (L1),P (L2), . . . ,P (Ln))

≤ IFRHA (I (K1), I (K2), . . . , I (Kn)) .

(iv) (Shift invariance): Consider another IFRV P (L) =(
P (L),P (L)

)
=
((
d, e

)
,
(
d, e

))
. Then

IFRHA
(
I (K1)⊕ P (L), I (K2)⊕ P (L), . . . ,

I (Kn)⊕ P (L)

)
= IFRHA (I (K1), I (K2), . . . , I (Kn))⊕ P (L).

(v) (Homogeneity): For any real number λ > 0;
IFRHA (λI (K1), λI (K2), . . . , λI (Kn)) =

λIFRHA (I (K1), I (K2), . . . , I (Kn)).

Proof: Proof follows from Theorem 2.

V. INTUITIONISTIC FUZZY ROUGH GEOMETRIC
AGGREGATION OPERATOR
This section consists of the detailed study of IF rough geo-
metric operator by embedding the concept of rough sets into
IF geometric operator. Then some important properties of the
investigated operators are presented in detail.

A. INTUITIONISTIC FUZZY ROUGH WEIGHTED
GEOMETRIC OPERATOR
This subsection is devoted for the study of IFRWG aggrega-
tion operator and described its desirable characteristics.
Definition 11: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight

vector ζ = (ζ1, ζ2, . . . , ζn)
T such that

∑n
i=1 ζi = 1 and

0 ≤ ζi ≤ 1. The IFRWG operator is described as:

IFRWG (I (K1), I (K2), . . . , I (Kn))

=

[
⊕
n
i=1

(
I (Ki)

)ζi ,⊕ni=1 (I (Ki)
)ζi]

Based on analysis of Definition 11, the aggregated result
for IFRWG operator is illustrated in Theorem 7.
Theorem 7: Let the collection I (Ki) =

(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vectors ζ =
(ζ1, ζ2, . . . , ζn)

T . Then IFRWG operator is determined as:

IFRWG (I (K1), I (K1), . . . , I (Kn))

=

[
⊕
n
i=1

(
I (Ki)

)ζi ,⊕ni=1 (I (Ki)
)ζi]

=


(

n∏
i=1

(
µi

)ζi
, 1−

n∏
i=1

(
1− γi

)ζi)
,(

n∏
i=1

(µi)
ζi , 1−

n∏
i=1

(1− γi)ζi
)
.

Proof: Proof is omitted here and follow fromTheorem 1.
From the above analysis I (K) and I (K) are IFRVs. So,

by Definition 11, ⊕ni=1
(
I (Ki)

)ζi and ⊕ni=1
(
I (Ki)

)ζi
are

also IFRVs. Therefore IFRWG (I (K1), . . . , I (Kn)) is also an
IFRV under IF approximation space (N, I).

Some important properties of IFRWG operator are
described in Theorem 8.
Theorem 8: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vec-

tors ζ = (ζ1, ζ2, . . . , ζn)T with
∑n

i=1 ζi = 1 and 0 ≤ ζi ≤ 1.
Then some important properties of IFRWG operator are
described as:

(i) (Idempotency): If I (Ki) = P (K) for all i =
1, 2, . . . , n where P (K) =

(
P (K),P (K)

)
=((

d, e
)
,
(
d, e

))
. Then

IFRWG (I (K1), I (K2), . . . , I (Kn)) = P (K).
(ii) (Boundedness): Let (I (K))− =(

min
i

I (Ki),max
i

I (Ki)

)
and (I (K))+ =(

max
i

I (Ki),min
j

I (Ki)

)
. Then

(I (K))− ≤ IFRWG (I (K1), I (K2), . . . , I (Kn)) ≤

(I (Ki))
+.

(iii) (Monotonicity): Let P (Li) =
(
P (Li),P (Li)

)
(i = 1, 2, . . . , n) be another collection of IFRVs such
that P (Li) ≤ I (Ki) and P (Li) ≤ I (Ki). Then
IFRWG (P (L1),P (L2), . . . ,P (Ln))

≤ IFRWG (I (K1), I (K2), . . . , I (Kn)).
(iv) (Shift invariance): Consider another IFRV P (L) =(

P (L),P (L)
)
=
((
d, e

)
,
(
d, e

))
. Then

IFRWG
(
I (K1)⊕ P (L), I (K2)⊕ P (L), . . . ,

I (Kn)⊕ P (L)

)
=

IFRWG (I (K1), I (K2), . . . , I (Kn))⊕ P (L).
(v) (Homogeneity): For any real number λ > 0;

IFRWG (λI (K1), λI (K2), . . . , λI (Kn)) =

λIFRWG (I (K1), I (K2), . . . , I (Kn)).
(vi) (Commutativity): Let I′ (Ki) =

(
I′ (Ki), I′ (Ki)

)
(i = 1, 2, . . . , n) be any permutation of I (Ki) =(
I (Ki), I (Ki)

)
. Then

IFRWG (I (K1), I (K2), . . . , I (Kn)) =

IFRWG
(
I′ (K1), I

′ (K2), . . . , I
′ (Kn)

)
.

Proof: Proof are easy and follows from Theorem 2.

B. INTUITIONISTIC FUZZY ROUGH ORDERED WEIGHTED
GEOMETRIC OPERATOR
Here we shall investigate the concept of IFROWG aggrega-
tion operators and discussed its important properties.
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Definition 12: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight

vector ζ = (ζ1, ζ2, . . . , ζn)
T such that

∑n
i=1 ζi = 1 and

0 ≤ ζi ≤ 1. The IFROWG operator is determined as:

IFROWG (I (K1), I (K2), . . . , I (Kn))

=

[
⊕
n
i=1

(
Iδ (Ki)

)ζi ,⊕ni=1 (Iδ (Ki)
)ζi]

Based on above Definition 12, the aggregated result for
IFROWG operator is illustrated in Theorem 9.
Theorem 9: Let the collection I (Ki) =

(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vectors ζ =
(ζ1, ζ2, . . . , ζn)

T . Then IFROWG operator is determined as:

IFROWA (I (K1), I (K1), . . . , I (Kn))

=

[
⊕
n
i=1

(
Iδ (Ki)

)ζi ,⊕ni=1 (Iδ (Ki)
)ζi]

=


(

n∏
i=1

(
µδi

)ζi
, 1−

n∏
i=1

(
1− γδi

)ζi)
,(

n∏
i=1

(µδi)
ζi , 1−

n∏
i=1

(1− γδi)ζi
)
,

where Iδ (Ki) =
(
Iδ (Ki), Iδ (Ki)

)
represents the largest

value of permutation from the collection of IFRVs.
Proof: Proof can be follow from Theorem 1.

Some important properties of IFROWG operator is devel-
oped in Theorem 10.
Theorem 10: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vec-

tors
ζ = (ζ1, ζ2, . . . , ζn)

T with
∑n

i=1 ζi = 1 and 0 ≤ ζi ≤ 1.
Then some important properties of IFROWG operator are
described as:

(i) (Idempotency): If I (Ki) = P (K) for all i =
1, 2, . . . , n where P (K) =

(
P (K),P (K)

)
=((

d, e
)
,
(
d, e

))
. Then

IFROWG (I (K1), I (K2), . . . , I (Kn)) = P (K) .

(ii) (Boundedness): Let (I (K))− =(
min
i

I (Ki),max
i

I (Ki)

)
and (I (K))+ =(

max
i

I (Ki),min
j

I (Ki)

)
. Then

(I (K))− ≤ IFROWG (I (K1), I (K2), . . . , I (Kn)) ≤

(I (Ki))
+.

(iii) (Monotonicity):LetP (Li) =
(
P (Li),P (Li)

)
(i =

1, 2, . . . , n) be another collection of IFRVs such that
P (Li) ≤ I (Ki) and P (Li) ≤ I (Ki). Then
IFROWG (P (L1),P (L2), . . . ,P (Ln))

≤ IFROWG (I (K1), I (K2), . . . , I (Kn)).
(iv) (Shift invariance): Consider another IFRV P (L) =(

P (L),P (L)
)
=
((
d, e

)
,
(
d, e

))
. Then

IFROWG
(
I (K1)⊕ P (L), I (K2)⊕ P (L), . . . ,

I (Kn)⊕ P (L)

)
=

IFROWG (I (K1), I (K2), . . . , I (Kn))⊕ P (L).
(v) (Homogeneity): For any real number λ > 0;

IFROWG (λI (K1), λI (K2), . . . , λI (Kn))

= λIFROWG (I (K1), I (K2), . . . , I (Kn))

(vi) (Commutativity): Let I′ (Ki) =
(
I′ (Ki), I′ (Ki)

)
(i = 1, 2, . . . , n) be any permutation of I (Ki) =(
I (Ki), I (Ki)

)
. Then

IFROWG (I (K1), I (K2), . . . , I (Kn)) =

IFROWG
(
I′ (K1), I

′ (K2), . . . , I
′ (Kn)

)
.

Proof: Proof are easy and follows from Theorem 2.

C. INTUITIONISTIC FUZZY ROUGH HYBRID GEOMETRIC
OPERATOR
In this section we will present the notion of IFRHG operator,
which weight both the value and their ordered position of an
IF arguments at the same time. The important properties of
the developed operator presented in detail.
Definition 13: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight

vector w = (w1,w2, . . . ,wn)
T such that

∑n
i=1 wi = 1 and

0 ≤ wi ≤ 1. Let ζ = (ζ1, ζ2, . . . , ζn)T such that
∑n

i=1 ζi = 1
and 0 ≤ ζi ≤ 1 be the associated weight vector of the given
collection of IFRVs. Then IFRHG operator is determined as:

IFRHG (I (K1), I (K2), . . . , I (Kn))

= ⊕
n
i=1

(
Ïδ (Ki)

)ζi
=

[
⊕
n
i=1

(
Ïδ (Ki)

)ζi
,⊕ni=1

(
Ïδ (Ki)

)ζi]
Based on above definition 13, the aggregated result for

IFRHG operator is illustrated in Theorem 11.
Theorem 11: Let the collection I (Ki) =

(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vector w =

(w1,w2, . . . ,wn)
T such that

∑n
i=1 wi = 1 and 0 ≤ wi ≤ 1.

Let ζ = (ζ1, ζ2, . . . , ζn)
T such that

∑n
i=1 ζi = 1 and 0 ≤

ζi ≤ 1 be the associated weight vector of the given collection
of IFRVs. Then IFRHA operator is determined as:

IFRHG (I (K1), I (K1), . . . , I (Kn)) = ⊕
n
i=1

(
Ïδ (Ki)

)ζi
=

[
⊕
n
i=1

(
Ïδ (Ki)

)ζi
,⊕ni=1

(
Ïδ (Ki)

)ζi]

=


(

n∏
i=1

(
µ̈δi

)ζi
, 1−

n∏
i=1

(
1− γ̈δi

)ζi)
,(

n∏
i=1

(
µ̈δi
)ζi
, 1−

n∏
i=1

(
1− γ̈δi

)ζi)
,

where Ïδ (Ki) = (I (Ki))
nwi =

((
I (Ki)

)nwi ,
(
I (Ki)

)nwi
)

represents the largest value of permutation from the collection
of IFRVs and n denotes the balancing coefficient.

Proof: Follow from Theorem 1.

Especially, if w =
(
1
n ,

1
n , . . . ,

1
n

)T
, then the developed

IFRHG operator reduced to IFROWG operator.
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TABLE 2. IF rough evaluation information by E1.

Some important properties of IFRHG operator is described
in Theorem 12.
Theorem 12: Consider the collection I (Ki) =(
I (Ki), I (Ki)

)
(i = 1, 2, . . . , n) of IFRVs with weight vec-

tors w = (w1,w2, . . . ,wn)
T such that

∑n
i=1 wi = 1 and

0 ≤ wi ≤ 1. Let ζ = (ζ1, ζ2, . . . , ζn)T such that
∑n

i=1 ζi = 1
and 0 ≤ ζi ≤ 1 be the associated weight vector of the
given collection of IFRVs. Then some important properties
of IFRHG operator are described as:
(i) (Idempotency): If I (Ki) = P (K) for all i =

1, 2, . . . , n where P (K) =
(
P (K),P (K)

)
=((

d, e
)
,
(
d, e

))
. Then

IFRHG (I (K1), I (K2), . . . , I (Kn)) = P (K).
(ii) (Boundedness): Let (I (K))− =(

min
i

I (Ki),max
i

I (Ki)

)
and (I (K))+ =(

max
i

I (Ki),min
j

I (Ki)

)
. Then

(I (K))− ≤ IFRHG (I (K1), I (K2), . . . , I (Kn)) ≤

(I (Ki))
+.

(iii) (Monotonicity): Let P (Li) =
(
P (Li),P (Li)

)
(i = 1, 2, . . . , n) be another collection of IFRVs such
that P (Li) ≤ I (Ki) and P (Li) ≤ I (Ki). Then
IFRHG (P (L1),P (L2), . . . ,P (Ln))

≤ IFRHG (I (K1), I (K2), . . . , I (Kn)).
(iv) (Shift invariance): Consider another IFRV P (L) =(

P (L),P (L)
)
=
((
d, e

)
,
(
d, e

))
. Then

IFRHG
(
I (K1)⊕ P (L), I (K2)⊕ P (L), . . . ,

I (Kn)⊕ P (L)

)
=

IFRHG (I (K1), I (K2), . . . , I (Kn))⊕ P (L).
(v) (Homogeneity): For any real number λ > 0;

IFRHG (λI (K1), λI (K2), . . . , λI (Kn)) =

λIFRHG (I (K1), I (K2), . . . , I (Kn)).
Proof: Proof follows Theorem 2.

VI. EDAS METHOD FOR MCGDM BASED ON ROUGH
AGGREGATION OPERATORS BY USING IF INFORM-ATION
In this competitive environment, the complexity in DM prob-
lems grows with the intricacy of the socio-economic envi-
ronment. So, in this scenario, it becomes more complicated
for an expert to take an accurate and intelligent decision.

In real life, it is intensively needed to fuse a group of pro-
fessional experts’ opinion to achieve more satisfactory and
useful results by utilizing group decision making models.
Therefore, MCGDM has the high potential and discipline
process to improve and evaluate multiple conflicting criteria
in all areas of decision making to get more satisfactory and
feasible decision making result. Here, we will use EDAS
method to solve MCGDM approach. The EDAS method was
presented by Ghorabaee et al. [40]. It was based on PDAS and
NDAS from AvS. Superior value of PDAS and inferior value
ofNDAS is considered the optimal choice. To study the hybrid
structure of EDAS method with IFRVs, we get intuitionistic
fuzzy rough EDAS (IFR-EDAS) method in which the experts
provided their assessment values in the form of IFRVs. The
basic steps of construction by utilizing the proposed approach
under IF rough information are as follows.
Suppose a set of m alternatives is represented by N =

{℘1, ℘2, . . . , ℘m} and a set of n decision attributes is denoted
by C = {c1, c2, . . . , cn}. Let D = {D1,D2, . . . ,Dt } be a
set of t professional decision makers who presented their
evaluation report for each alternative ℘i(i = 1, 2, . . . ,m)
against their attributes cj(j = 1, 2, . . . , n). Let ζ =

(ζ1, ζ2, . . . , ζn)
T be the weight vector for attributes cj and

ϑ = (ϑ1, ϑ2, . . . , ϑt)
T be the weight vector for deci-

sion maker Dl(l = 1, 2, . . . , t) such that
∑n

j=1 ζj =

1,
∑t

l=1 ϑl = 1 and 0 ≤ ζj, ϑl ≤ 1. The classical
algorithm for EDAS method with IF rough environment is
described as:
Step 1: Collect the evaluation information of professional

decision makers for each alternative ℘i against their attribute
cj and construct a decision matrix which is given as:

M =

[
I
(
Kl
ij

)]
m×n

where I
(
Kl
ij

)
represent the IFRVs of alternative ℘i against

attributes cj by the professional decision maker Dl
Step 2: The collective information decision makers against

their weight vector are aggregated by utilizing the proposed
approach to get the aggregated decision matrix.

M =
[
I
(
Kij
)]
(m×n) ,
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TABLE 3. IF rough evaluation information by E2.

TABLE 4. IF rough evaluation information by E3.

Step 3: Normalized the aggregated matrix M =[
I
(
Kij
)]
(m×n) to M

n
=

[
I
(
Kn
ij

)]
(m×n)

, that is

M
n
=


I
(
Kij
)
=

((
µij, γij

)
,
(
µij, γij

))
for benefit

I
(
Kn
ij

)
= I

(
Kij
)c
=

((
γi, µi

)
, (γi, µi)

)
for cost

Step 4: Calculate the value of AvS by applying developed
approached for all alternative under each attribute.

AvS =
[
AvSj

]
1×n =

[
1
m

∑m

i=1
I
(
Kn
ij

)]
1×n

,

This implies

AvS =
[
AvSj

]
1×n =

[
1
m

∑m

i=1
I
(
Kn
ij

)]
1×n

=


(
1−

m∏
i=1

(
1− µn

ij

) 1
m
,

m∏
i=1

(
γ n
ij

) 1
m

)
,

℘

(
1−

m∏
i=1

(
1− µn

ij

) 1
m
,

m∏
i=1

(
γ n
ij

) 1
m

)

1×n

Step 5: Based on determined AvS, we can calculate PDAS
and NDAS by utilizing the below formula:

PDASij =
[
PDASij

]
(m×n)

=

max
(
0,
[
S
(
I
(
Kn
ij

))
− S

(
AvSj

)])
S
(
AvSj

) ,

NDAS =
[
NDASij

]
(m×n)

=

max
(
0,
[
S
(
AvSj

)
− S

(
I
(
Kn
ij

))])
S
(
AvSj

) .

Step 6: Next to calculate the positive weight distance (SPi)
and negative weight distance (SNi)

SPi =
∑n

j=1
ζjPDASij, SNi =

∑n

j=1
ζjNDASij

Step 7:Normalized the SPi and SNi by using the following
formula:

NSPi =
SPi

max
i
(SPi)

, NSNi = 1−
SNi

max
i
(SNi)

Step 8: Based on NSPi and NSNi, calculate the appraisal
score (AS) value by using the following formula:

ASi =
1
2
(NSPi + NSNi)

Step 9: Depend on the value of ASi, rank all the values in
specific order. Larger the value of ASi superior that value is.

VII. ILLUSTRATIVE EXAMPLE BASED ON EDAS METHOD
To show the efficiency and superiority of investigated
approach we will present a practical MCGDM example of
small hydropower plant (SHPP) which is cited from [71].

Consider a construction company launched a project of
four SHPP {℘1, ℘2, ℘3, ℘4} in different geographical sites
of Pakistan that are consider for further evaluation to choose
the best optimal power plant for construction activities.
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TABLE 5. IF rough aggregated decision matrix by using IFRWA operators.

TABLE 6. The value of average solution (AvS).

TABLE 7. The results of PDASij matrix.

To assess the SHPP a construction company invited three
professional experts Ei (i = 1, 2, 3) with weight vector w =
(0.29, 0.33, 0.38)T . The experts assessed these four SHPP
concerning the five criteria, which are c1 = approachability,
c2 = socioeconomic climate, c3 = constructability, c4 =
technical feasibility and c5 = purchasing and feed-in tar-
iffs with weight vector ζ = (0.21, 0.24, 0.22, 0.15, 0.18)T .

TABLE 8. The results of NDASij matrix.

TABLE 9. The results of SPi and SNi
(
i = 1, 2, 3, 4

)
.

The professional experts assessed their assessment report
for each ℘i against their corresponding criteria in the form
of IFRVs. Now using the developed approach of IFRWA
operator to get the best SHPP system by utilizing the above
step wise decision algorithm of EDAS method.
Step 1: Collect the evaluation information of professional

decision makers for each alternative ℘i against their criteria
cj and construct a decision matrix M =

[
I
(
Kl
ij

)]
m×n

which
is given in Tables 2 – 4:

10212 VOLUME 9, 2021



R. Chinram et al.: EDAS Method for MCGDM Based on Intuitionistic Fuzzy Rough Aggregation Operators

TABLE 10. Ranking ordered of the proposed models.

TABLE 11. Comparative study of proposed method with existing methods.

Step 2: The collective information decision makers
against their weight vector are aggregated by using
the IFRWA operators to get the aggregated decision
matrix M =

[
I
(
Kij
)]
(m×n) and the result is given

in Table 5.

Step 3: All criteria are benefit types so need to
normalize it.
Step 4: Determine the value of AvS by applying proposed

approached for all alternative under each criteria is given
in Table 6.
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Step 5: Based on determined AvS as given in Table 6,
we can find the score value of AvSi (i = 1, 2, . . . 5) and then
calculate PDAS and NDAS as given in Tables 7 – 8.

S (AvS1) = 0.6852, S (AvS2) = 0.6938,

S (AvS3) = 0.6436, S (AvS4) = 0.6474,

S (AvS5) = 0.6786

Step 6: Next to calculate the SPi and SNi by using criteria
weight vector ζ = (0.21, 0.24, 0.22, 0.15, 0.18)T , which is
given in Table 9.
Step 7: Now to normalize the SPi and SNi, as given below.

NSP1 = 1.0000, NSP2 = 0.0680,

NSP3 = 0.1822, NSP4 = 0.0140

NSN1 = 1.0000, NSN2 = 0.8968,

NSN3 = 0.2636, NSN4 = 0.0000

Step 8: Based on NSPi and NSNi, now to calculate the
appraisal score (AS) value as:

AS1 = 1.0000, AS2 = 0.4824,

AS3 = 0.2232, AS4 = 0.00702

Step 9: Depend on the above calculation the ranking result
of the proposed models based on EDAS method are given
Table 10. From Table 10, it is clear that the ranking ordered is
slightly different but the best optimal option for the proposed
models remain same. Hence the company should select the
best SHPP ℘1.

A. COMPARATIVE STUDY
The EDAS method is based on PDAS and NDAS from AvS.
The superior value of PDAS and inferior value of NDAS
is considered the optimal choice. Here, to show the supe-
riority of our investigated IFR- EDAS method, a compar-
ative analysis has been made with some existing methods
in context (see [3, 4, 11, 12, 28, 29, 34, 35, 43, 44, 45, 51,]).
Based on Table 5 with criteria weight vectorζ =

(0.21, 0.24, 0.22, 0.15, 0.18)T , the aggregation results of
comparative study of existing models with our method have
been listed in Table 11. From Table 11, it is clear that the
existing methods such as IF- EDAS, IF-TOPSIS, IF-VIRKO,
IF-GRA methods and some aggregation operators are inac-
cessible to solve the developed illustrated example of section
6 by using IF rough values. However, the methods presented
in [28], [29], [34], [35] that have rough information but these
methods are inaccessible to solve the proposed model. From
the analysis of Table 11, we see that the existingmethods have
the deficiency of rough information and these approaches are
not capable to solve and rank the developed example. There-
fore, the developed approach is more capable and effective
than the existing methods

B. CONCLUSION
TheMCGDM has the high potential and discipline process to
improve and evaluate multiple conflicting criteria in all areas

of DM to get more satisfactory and feasible DM result. In DM
problems, the factual information about some fact is usually
unknown, and this uncertainty makes the decision process
more challenging and complex. The primitive notions of
rough sets and intuitionistic fuzzy set (IFS) are general math-
ematical tools having the ability to handle the uncertain and
imprecise knowledge easily. EDAS method has a significant
role in the decision making problems especially when more
conflict criteria exist in MCGDM problems. This method is
based on PDAS andNDAS from AvS. Superior value of PDAS
and inferior value of NDAS is considered the optimal choice.
To study the hybrid structure of EDAS method with IFRVs,
we get IFR-EDAS method. The aim of this manuscript is to
present IFR- EDASmethod based on IF rough averaging and
geometric aggregation operators. In addition, we put forward
the concept of IFRWA, IFROWA and IFRHA aggregation
operators. Furthermore, the concept of IFRWG, IFROWG
and IFRHG aggregation operators are investigated. The basic
desirable characteristics of the developed operator are given
in detail. A new score and accuracy functions are defined for
the proposed operators. Next IFR-EDASmodel for MCGDM
and their stepwise algorithm are demonstrated by utilizing
the proposed approach. Finally, a numerical example for
the developed model is presented and a comparative study
of the investigated models with some existing methods are
expressed broadly which show that the investigated models
are more effective and useful than the existing approaches.

In future work, we shall extend the proposed approach
to different aggregation operators including Hamacher oper-
ations, Dombi operations, Choquet integral, Einstein oper-
ations, Maclaurin symmetric mean operators, interaction
aggregation operators Bonferroni mean etc. with Intuitionis-
tic and Pythagorean fuzzy information. We will also focus on
the applications of the proposed method by using Intuition-
istic and Pythagorean fuzzy information in different real-life
problems. Moreover, we will extend the developed method to
other generalization of fuzzy sets as well and apply it to other
fields, such as medical diagnosis
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