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Bootstrap & Jackknife 
Motivation 

In scientific research 
 

•  Interest often focuses upon the estimation of some 
unknown parameter, θ. The parameter θ can represent 
for example, mean weight of a certain strain of mice, 
heritability index, a genetic component of variation, a 
mutation rate, etc.   

•  Two key questions need to be addressed: 

 1. How do we estimate θ ? 

 2. Given an estimator for θ , how do we 
     estimate its precision/accuracy? 

•  We assume Question 1 can be reasonably well 
specified by the researcher 

•  Question 2, for our purposes, will be addressed via 
the estimation of the estimator’s standard error 
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What is a standard error? 
 
Suppose we want to estimate a parameter theta (eg. 
the mean/median/squared-log-mode) of a distribution 
•  Our sample is random, so… 
•  Any function of our sample is random, so... 
•  Our estimate, theta-hat, is random! So... 
•  If we collected a new sample, we’d get a new 

estimate. Same for another sample, and another... 
So 

•  Our estimate has a distribution! It’s called a 
sampling distribution! 

 
The standard deviation of that distribution is the 
standard error 
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Bootstrap Motivation 

Challenges 
 

•  Answering Question 2, even for relatively simple 
estimators (e.g., ratios and other non-linear functions 
of estimators) can be quite challenging   

•  Solutions to most estimators are mathematically 
  intractable or too complicated to develop 
  (with or without advanced training in statistical 
  inference) 
 

•  However 
 

•  Great strides in computing, particularly in the 
last 25 years, have made computational intensive 
calculations feasible. 

•  We will investigate how the bootstrap allows us to 
obtain robust estimates of precision for our estimator, 
θ, with a simple example… 
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Bootstrap Estimation 

Estimating the precision of the sample mean 

•  A dataset of n observation provides more than an 
estimate of the population mean (denoted here as      ), 
where 

•    
 

•  It gives an estimate of the precision of      , namely 

•                                    , 
 
 
where                                           , 
 
is an estimate of the population variance. 
 

•  This standard error estimate is that it does not extend 
to estimators other than 
• Standard deviation: square root of variance; standard 
error: estimate of standard deviation 
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Bootstrap Estimation 

Estimating the precision of the sample mean 

•  From the formulas on the previous page, we can 
obtain an estimate of precision for        by estimating 
the population variance and “plugging” it into the 
formula for the standard error estimate. 
 

•  Question: What IF you did not know the formula 
for the standard error of the sample mean, BUT you 
had access to modern PC. How might you obtain an 
estimate of precision? 

X

•  Answer: The bootstrap! 
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Bootstrap Algorithm 

Bootstrapping 

•  Assuming the sample accurately reflects the 
population from which it is drawn 

•  Generate a large number of “bootstrap” samples by 
resampling (with replacement) from the dataset 

•  Resample with the same structure (dependence, 
sample sizes) as used in the original sample 

•  Compute your estimator,     , (here,                ), for 
each of the bootstrap samples 

•  Compute the “standard deviation”  from the 
statistics calculated above. 

 

X

θ! θ! = X
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Bootstrap Algorithm 

Bootstrap sample                Bootstrap estimates   

  1: 

  2: 

 

 

  B: 

 
 

Compute       , where                                            , and 
 

                                 . 
 
The bootstrap standard error is 

 

For other estimators, simply replace      with the     of 
your choice. 
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Bootstrap Estimation 
Examples 

What is the variance of the sample median? No idea! 
 => Use the bootstrap! 

 
Bootstrapped estimates of the standard error for 
sample median 
 

        Data         Median 
Original sample:  {1, 5, 8, 3, 7}  5 
 
Bootstrap 1:  {1, 7, 1, 3, 7}  3 
Bootstrap 2:  {7, 3, 8, 8, 3}  7 
Bootstrap 3:  {7, 3, 8, 8, 3}  7 
Bootstrap 4:  {3, 5, 5, 1, 5}  5 
Bootstrap 5:  {1, 1, 5, 1, 8}  1 
     etc. 
Bootstrap B (=1000) 
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Bootstrap Estimation 
Examples 

Bootstrapped estimates of the standard error for 
sample median (cont.) 
 

•  Descriptive statistics for the sample medians 
from 1000 bootstrap samples 
 
       B    1000 
       Mean    4.964 
       Standard Deviation  1.914 
       Median           5 
       Minimum, Maximum     1, 8 
       25th, 75th percentile     3, 7 
 
•  We estimate the standard error for the sample 
median as 1.914 
 
•  A 95% asymptotic (with n=5?) confidence 
interval (using the 0.975 quantile of the standard 
normal distribution) is 

5 +/- 1.96(1.914) = (1.25, 8.75) 
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Bootstrap Estimation 
Examples 

Bootstrapped estimates of the standard error for 
sample relative risk 

 r = P[D|Exposed]/P[D|Not exposed] 
 
Cross-classification of Framingham Men by high 
systolic blood pressure and heart disease 
 

   Heart Disease 
High Systol BP   No  Yes 

  No   915  48 
  Yes   322  44 

 
The sample estimate of the relative risk is 
 

 r = (44/366)/(48/963) = 2.412 
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Bootstrap Estimation 
Examples 

Bootstrapped estimates of the standard error for 
the relative risk (cont.) 
 

•  Descriptive statistics for the sample relative 
risks 
 
       B    100000 
       Bootstrap mean, r  2.464 
       Bootstrap Median  2.412 
       Standard Deviation  0.507 
 
•  The bootstrap standard error for the estimated 
relative risk is 0.507 
 
•  A 95% bootstrap confidence interval is 
 

 2.412 +/- 1.96(0.507) = (1.42, 3.41) 
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Bootstrap Summary 

Advantages 
 
•  All purpose computer intensive method useful for 
statistical inference. 
•   Bootstrap estimates of precision do not require 
knowledge of the theoretical form of an estimator’s 
standard error, no matter how complicated it is. 
 
Disadvantages 
 
•  Typically not useful for correlated (dependent) data. 
•  Missing data, censoring, data with outliers are also 
problematic 
•  Often used incorrectly 
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Jackknife 

Jackknife Estimation 

•  The jackknife (or leave one out) method, invented 
by Quenouille (1949), is an alternative resampling 
method to the bootstrap.  

•  The method is based upon sequentially deleting one 
observation from the dataset, recomputing the 
estimator, here,       , n times. That is, there are exactly 
n jackknife estimates obtained in a sample of size n. 

•  Like the bootstrap, the jackknife method provides a 
relatively easy way to estimate the precision of an 
estimator, θ. 

•  The jackknife is generally less computationally 
intensive than the bootstrap 

θ! (i )
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Jackknife Algorithm 

Jackknifing 

•  For a dataset with n observations, compute n 
estimates by sequentally omitting each observation 
from the dataset and estimating     on the remaining 
n – 1 observations. 

•  Using the n jackknife estimates,                              , 

 we estimate the standard error of the estimator as 

 

 

•  Unlike the bootstrap, the jackknife standard error 
estimate will not change for a given sample 
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Jackknife Summary 

Advantages 
 
•  Useful method for estimating and compensating for 
bias in an estimator. 
•   Like the bootstrap, the methodology does not 
require knowledge of the theoretical form of an 
estimator’s standard error. 
•  Is generally less computationally intensive 
compared to the bootstrap method. 
 
Disadvantages 
 
•  The jackknife method is more conservative than the 
bootstrap method, that is, its estimated standard error 
tends to be slightly larger. 
•   Performs poorly when the the estimator is not 
sufficiently smooth, i.e., a non-smooth statistic for 
which the jackknife performs poorly is the median. 
 


