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Abstract

The authors propose a CTA-PLS assessment routine for measurement models. This routine applies confirmatory tetrad analysis (CTA) in a manner
which is consistent with partial least squares (PLS) pathmodeling assumptions. The conceptualization employs a bootstrapping procedure to accomplish
an appropriate statistical test examining vanishing tetrads in CTA-PLS. The approach allows distinguishing a formative indicator specification from a
reflective indicator specification. Applications using experimental and empirical data demonstrate the usefulness and effectiveness of CTA-PLS. As a
means of evaluating PLS path modeling results, the routine assists researchers in avoiding potentially unrepresentative consequences of measurement
model misspecification.
© 2008 Elsevier Inc. All rights reserved.
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1. Reflective and formative measurement models in partial
least squares path modeling

The partial least squares (PLS) path modeling methodology
(Lohmöller, 1989) allows reflective and formative computations
with respect to the measurement of latent variables. Although
PLS path modeling represents a well-substantiated method for
estimating complex cause–effect-relationship models in busi-
ness research, limited work has been done on the assessment of
the mode of measurement models in general, and the appro-
priateness of using formative measurement models in PLS path
modeling in particular. Several tests for examining the reli-
ability of reflective measurement models exist but the academic
literature shows an inadequate emphasis on statistical methods
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that assist in evaluating formative measurement models and
the manifest variables (indicators) that form those composite
variables (i.e., indexes).

Formative measurement models (c.f. Diamantopoulos, 2006)
come into use when an explanatory combination of indicator
variables underlies the latent construct. Business research
studies typically test formative indicator variables for their valid-
ity using theoretic rationale and expert opinion (e.g., Rossiter,
2002), while commonly examining reflective measures using a
range of techniques of scale construction and measurement
assessment including factor analysis (Spearman, 1904) and
classical test theory (Lord and Novick, 1968). An evaluation of
reflective measurement models concerns unidimensionality.
However, this logic is to some extend inappropriate in the case
of formative measurement models (Bollen and Lennox, 1991).
In a similar vein, Diamantopoulos and Winklhofer (2001) point
out that conventional procedures –which researchers commonly
employ to examine the validity and reliability of measurement
models of the reflective mode (e.g., confirmatory factor analysis
and assessment of internal consistency) – are not suitable for the
formative mode.

Much of the problem surrounding the absence of formative
indicator testing is attributable to construct or measurement
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model misspecification (Jarvis et al., 2003). Misspecification of
measurement models can bias inner model parameter estima-
tion (e.g., Gudergan, 2005) and lead to incorrect assessments
of relationships in PLS path modeling. The most suitable
approach for avoiding misspecification for measurement mod-
els is to employ a-priori techniques such as Diamantopoulos and
Winklhofer's (2001) approach to index construction, an exam-
ination of qualitative decision rules for determining whether
a construct is formative or reflective (Jarvis et al., 2003), or the
C-OAR-SE procedure (Rossiter, 2002), and to account for the
commentary put forward by authors such as Diamantopoulos
(2005), Finn and Kayande (2005), and Rossiter (2005), who
provide additional insights into a-priori measurement model
development.

Notwithstanding this theoretic foundation, few endeavors in
the academic business literature stress techniques for statis-
tically assessing the application of formative measurement
models in PLS path modeling. For instance, authors such as
Bucic and Gudergan (2004), Venaik et al. (2004), and Gudergan
(2005) have applied Bollen and Ting's (1993) confirmatory
tetrad analysis (CTA) for drawing conclusions about the ap-
propriateness of using formative measurement models as
compared to reflective measurement models. Within the context
of those applications, the authors analyze the homogeneity of
correlations among manifest variables in the measurement
models to assist in making this determination. They also use
CTA results to assess whether manifest variables in the mea-
surement model are independent determinants of a latent
variable rather than reflections of the latent construct in an
effect indicator scale. In this manner, the application of CTA
provides additional insights and represents a means for testing
the mode of measurement models according to theoretical
foundations with respect to empirical data (Rigdon, 2005).

This study provides both conceptual as well as practical
guidelines for evaluating the appropriate application of outer
models in PLS path modeling utilizing CTA. The general ap-
proach of this paper draws on (a) an initial theoretical indicator
specification of latent variables as authors such as Diamantopou-
los (1999, 2005), Diamantopoulos and Winklhofer (2001), Jarvis
et al. (2003), and Rossiter (2002, 2005) suggest; (b) the CTA-PLS
evaluation of measurement models applying CTA in a manner
that is consistentwith PLS pathmodeling assumptions; and (c) the
straightforward application of the SmartPLS software application
for PLS path modeling that includes the CTA-PLS module
(Ringle et al., 2005). The focus of this paper is on the integrative
evaluation of outer models and the application of the CTA-PLS
module. This paper includes methodological advances that
provide valuable insight assisting in evaluating the mode of
measurement models and proposes an approach to distinguish
formative indicators from reflective indicators.

2. Confirmatory tetrad analysis for measurement model
evaluation in structural equation modeling

The covariance-based structural equationsmodeling (CBSEM;
c.f. Diamantopoulos and Siguaw, 2000) methodology allows
researchers to hypothesize and test a theory about relationships
by taking measurement errors into account (Bollen, 1989). The
structural model usually includes latent constructs which
researchers do not directly observe and which they measure in
terms of one or directly observable indicator variable. CTA
facilitates the evaluation of cause–effect relationships for latent
variables and their specification of indicators in measurement
models. Referring to four indicator variables, a tetrad is the
difference of the product of a pair of covariances and the product
of another pair of covariances. The six covariances of four in-
dicator variables permit formation of three tetrads:

s1234 ¼ r12r34 � r13r24;
s1342 ¼ r13r42 � r14r32; and
s1423 ¼ r14r23 � r12r43:

ð1Þ

While the construction of tetrads according to Eq. (1) requires
four indicator variables at a time, CTA is also applicable to
measurement models of more or less than four indicators as
Bollen and Ting (1993) describe in detail. These authors propose
the concept of vanishing tetrads using a covariance or correlation
data matrix in CBSEM applications to complement standard
procedures of model evaluation, and provide methods for selec-
ting model-implied non-redundant vanishing tetrads, significance
testing, and estimating the power of the test statistic. A vanishing
tetrad equals zero and all model-implied non-redundant tetrads
vanish in reflectivemeasurementmodels (Bollen andTing, 2000).

Bollen and Ting (2000) propose the use of CTA as a means to
distinguish causal from effect indicators in measurement models
of latent variables in CBSEM (CTA-SEM) by testing between
the hypothesis H0: τ=0 and the alternative hypothesis H1: τ≠0.
A non-significant test statistic supports H0 involving consis-
tency of the sample data with the vanishing tetrads implied by a
reflective measurement model. In contrast, a significant test
statistic supports H1 that casts doubt on the effect indicator
model in favor of the alternative cause indicator model. Re-
searchers may reject this hypothesis at the conventional alpha
level (type I error rate) but do not control committing a type II
error (failure to reject H0 when H1 is true). Bollen and Ting
(2000) provide several numerical examples that demonstrate the
usefulness of CTA-SEM evaluation of measurement models to
distinguish causal from effect indicators.

Applications of CTA macros (e.g., Ting, 1995; Hipp et al.,
2005) support this statistical argument. They provide results for
every single tetrad and their t-values of the Student's t distribution
as well as χ2, df (degrees of freedom) and the p (probability)-
value for the simultaneous vanishing tetrad test. The simultaneous
tetrad test (Bollen, 1990) is consistent with and complements the
CBSEM method by (1) providing a test of under-identified
models, (2) comparing the fit of models that are not nested in the
conventional likelihood ratio test, (3) not showing convergence
problems since numerical minimization (starting from specific
values) is not entailed, and (4) providing an assessment on the
likelihood ratio test fit (Bollen and Ting, 1993). CTA, in its
original conception, assumes continuous normal and non-normal
observed variables. In the CBSEM context, Hipp and Bollen
(2003) attend to the vanishing tetrad test for working with cen-
sored, ordinal, or dichotomous indicator variables.
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3. Confirmatory tetrad analysis for measurement model
evaluation in PLS path modeling

PLS path modeling (c.f. Falk and Miller, 1981; Lohmöller,
1989; Tenenhaus et al., 2005) represents a non-traditional alter-
native to CBSEM for structural equation modeling (Rigdon,
2005). However, compared to CBSEM (Fornell and Bookstein,
1982; Schneeweiß, 1991), Wold's (1982) PLS method of soft
modeling is rather a different than an alternative statistical
methodology for estimating these models. The PLS methodol-
ogy rests on predictor specification (Wold, 1988) which adopts
the assumptions for a linear conditional expectation relationship
between independent and dependent variables in the inner and
outer path models (Chin, 1998; Lohmöller, 1989). Given these
properties, the vanishing tetrad test analysis also applies to
PLS path modeling. The use of CTA in PLS (CTA-PLS), in
principal, follows Bollen and Ting's (2000) confirmatory
approach of testing model-implied vanishing tetrads and the
application of CTA to help distinguish between formative
and reflective measurement models in PLS path modeling.
Although CTA-PLS uses a similar evaluation process, the
approach differs from CTA-SEM for PLS methodological as-
sumptions in both the single tetrad testing approach and the
simultaneous tetrad testing procedure.

Firstly, CTA-PLS builds on the statistical test for every single
model-implied vanishing tetrad. To overcome the limitations
regarding distributional assumptions of the single tetrad test,
CTA-PLS follows Bollen's (1990) suggestion and includes
a bootstrapping routine. Asymptotic distribution theory justifies
using bootstrap estimators for this test but requires some
moment conditions and some degree of smoothness regarding
the given statistic. The weakness of these assumptions under-
lying the bootstrapping approach does not restrict the distribu-
tions of the data to a special distributional family as, for
example, normal distributions (Shao and Tu, 1995). The more
general setting is what makes the bootstrapping approach
suitable for testing the statistical significance of single vanish-
ing tetrads in a way which is consistent with the assumptions
underlying the PLS methodology (Tenenhaus et al., 2005). This
kind of bootstrapping differs from the routine that Bollen and
Ting (1998) present to generate a bootstrap distribution for their
simultaneous tetrad test statistic T to obtain the bootstrap
probability value (p-value).

Secondly, results for the single non-redundant vanishing
tetrad significance tests per measurement model provide a basis
for deciding whether a reflective operationalization does not
conform to the empirical data. A rejection of the reflective mode
provides support for a formative indicator specification. As this
analysis usually includes several single tetrads per measurement
model, CTA-PLS involves the multiple testing problem (Miller,
1981). Bollen (1990) accounts for this problem by Bonferroni
adjustments of the significance levels. The Bonferroni method
assures that the familywise error rate does not exceed the level α
for all n desired tests. In compliance with PLS methodological
assumptions, the non-parametric nature of the Bonferroni ap-
proach does not require certain assumptions about the data and
the dependence between comparisons. Consequently, the
method applies to almost any test statistic and multiple testing
situation (e.g., for multiple tests based on individual confidence
intervals).

The present research uses Bonferroni adjustments as a
satisfactory means to address the multiple testing problem
within the PLS path modeling context. However, “[a]n
alternative simultaneous test of whether all tetrad differences
strongly implied by the model are zero is possible” (Bollen,
1990, p. 89) and represents the methodological foundation for
CTA-SEM evaluation (Bollen and Ting, 1993). The resultant
test statistic, however, asymptotically approaches a χ2 distribu-
tion with the degrees of freedom equal to the number of tested
tetrads. This test criterion builds on asymptotic theory which, in
contrast to PLS path modeling, is in compliance with CBSEM
approaches. “Unlike conventional SEM, PLS does not aim to
test a model in the sense of evaluating discrepancies between
empirical and model-implied covariance matrices. Eschewing
assumptions about data distributions or even sample size, PLS
does not produce an overall test statistic like conventional
SEM's χ2.” (Rigdon, 2005, p. 1935). Moreover, Ting (1995)
outlines a note of caution regarding asymptotic theory. For
instance, the asymptotic distribution-free estimator requires
very large sample sizes so that the asymptotic properties are an
appropriate approximation of finite samples. Bollen and Ting
(1998) showed that the sampling distribution of the test statistic
can significantly deviate from χ2 when samples' sizes are small.
These authors present a bootstrap estimation of the p-value for
their simultaneous tetrad test statistic T and demonstrate that
“the bootstrap distribution of the vanishing tetrad test statistic
provides a useful check on the results using the χ2 distribution
for calculating p values” (Bollen and Ting, 1998, p. 100) – an
approach that Johnson and Bodner (2007) further elaborated.

In consideration of PLS path modeling assumptions, aspects
of general applicability for hypothesis testing, and simplicity
of routines, CTA-PLS follows Bollen's (1990) suggestions.
More specifically, the routine includes the single-stage
Bonferroni method to compute simultaneous confidence
intervals for multiple tetrad tests. “When a confidence interval
for a difference does not include zero, the hypothesis that the
difference is zero is rejected. Testing with confidence intervals
has the advantage that they give more information by indicating
the direction and something about the magnitude of the
difference or, if the hypothesis is not rejected, the power of
the procedure can be gauged by the width of the interval”
(Shaffer, 1995, p. 575). The use of multiple tetrad tests has some
limitations in comparison with the alternative simultaneous
testing routine. For example, the latter is more powerful. The
use of multiple tests in this study, however, is more conservative
and reliably rejects H0. Miller (1986) supports this notion and
points out that only when the test does not reject the null hy-
pothesis a detailed analysis employing a test with greater power
might be useful. Conservative testing routines can correctly
depict if a statistical test is significant or not significant for
a given α level. In the latter situation, more elaborated and
powerful testing routines will unlikely produce significant re-
sults. Detailed analyses by tests with higher power might be
useful in those very few situations in which results are
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insignificant but appear to be “almost” significant. However,
modifications of the Bonferroni approach for gaining power in
multiple testing, for example the Holm (1979) or the Hochberg
(1988) procedure, provide the same conclusions when evaluat-
ing the mode of a measurement model via model implied non-
redundant vanishing tetrads.

Although the routines differ, the systematic application of
CTA-PLS for the assessment of measurement models is similar
to the one for CTA-SEM (Bollen and Ting, 2000). CTA-PLS
involves the following steps:

1. Form and compute all vanishing tetrads for the measurement
model of a latent variable.

2. Identify model-implied vanishing tetrads.
3. Eliminate redundant model-implied vanishing tetrads.
4. Perform a statistical significance test for each vanishing

tetrad.
5. Evaluate the results for all model-implied non-redundant

vanishing tetrads per measurement model by accounting for
multiple testing issues.

Step 1 involves the selection of the measurement model for
CTA evaluation and computation of the vanishing tetrads. Four
manifest variables in a measurement entail a set of three
vanishing tetrads (Eq. 1). A measurement model that includes
five manifest variables entails five different combinations of
four variables and each of these sets involves three vanishing
tetrads resulting in a total of fifteen vanishing tetrads. In
general, n!/(n−4)!4! sets of four variables, each resulting in
three vanishing tetrads, exist for measurement models with n
manifest variables. Measurement models with less than four
manifest variables require an inclusion of indicators from
another latent variable to form a set of four manifest variables to
carry out CTA-PLS. The procedure follows the precise
description which Bollen and Ting (1993) provide. In contrast
to CBSEM, PLS path modeling does not account for certain
kinds of covariances in the model structure, for example
covariances of error terms of manifest variables in a reflective
measurement model, that result in a lower number of model-
implied vanishing tetrads in CTA-SEM. For this reason, CTA-
Table 1
Examples for the selection of model-implied vanishing tetrads

ξ

Latent variable ξ1 and a measurement model
with four manifest variables

R
F
ξ

Latent variable ξ1 with three manifest variables and latent
variable ξ2 with one manifest variable in the measurement model;
for a path relationship from ξ1 to ξ2 (and the reverse case)

R
R
F
F
ξ

Latent variables ξ1 and ξ2 each with two manifest variables in the
measurement model; for a path relationship from ξ1 to ξ2
(and the reverse case)

R
R
F
F

PLS implies all vanishing tetrads for a reflective measurement
model with four and more manifest variables. In accordance
with Bollen and Ting's (1993, 2000) explications and with
respect to PLS methodological assumptions, a reduction of the
number of vanishing tetrads in CTA-PLS predominantly en-
sues for latent variables that have two manifest variables in a
reflective measurement model. However, the expectations for
formative indicator specifications are different: None of the
tetrads shall vanish in formative measurement models. Table 1
presents examples for the measurement of a latent variable
(within a PLS path model) that includes four or less reflective or
formative indicators and its particular model-implied vanishing
tetrads in CTA-PLS.

In Step 3 of CTA-PLS, algebraic substitution allows
excluding all redundant model-implied vanishing tetrads from
the analysis (Bollen and Ting, 1993). This redundancy exists,
for example, whenever the same pair of variances appears in
two model-implied vanishing tetrads. Elimination of those re-
dundant tetrads considerably improves the performance of Step
4 and is necessary for Step 5. In Step 4, for every single model-
implied non-redundant vanishing tetrad CTA-PLS determines
whether the value is significantly different from zero. Several
authors (e.g., Kenny, 1974; Spearman and Holzinger, 1924;
Wishart, 1928) have proposed appropriate statistical tests for
this assessment but all of them require a multivariate normal
distribution for the observed variables (Bollen, 1990). This
assumption is not consistent with the non-parametric character
of PLS. For this reason, statistical significance tests for
evaluating PLS path modeling results employ a bootstrapping
procedure (Chin, 1998). To introduce an appropriate statistical
test for vanishing tetrads, CTA-PLS follows one of Bollen's
(1990) suggestions and utilizes a bootstrapping routine on raw
data (Davison and Hinkley, 1997). This method complies with
the approach for evaluating the significance of PLS estimates
for path coefficients (Tenenhaus et al., 2005). Generating a
sufficient number of bootstrap subsamples (e.g., 5000), and
computing their relevant tetrads allows obtaining the bootstrap
estimated standard error (se) for every tetrad (τ) and the t-value
of the Student's t distribution (t-value= τ / se). The null
hypothesis is H0: τ=0 and a t-value (two-tailed test) above or
1 Model-implied vanishing tetrads

eflective τ1234, τ1342, τ1423
ormative None

1 ξ2 Model-implied vanishing tetrads

eflective Reflective τ1234, τ1342, τ1423
eflective Formative None
ormative Reflective None
ormative Formative None

1 ξ2 Model-implied vanishing tetrads

eflective Reflective τ1342
eflective Formative τ1342
ormative Reflective τ1342
ormative Formative None



Fig. 1. PLS path model for the experimental CTA example.
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below a critical value for the conventional α level supports
rejection of the null hypothesis.

The statistical test builds on a test statistic Twhich measures
the discrepancy between the data and the null hypothesis. The
significance probability p=Pr(T≥ t | H0) measures the level of
evidence against H0: θ=θ0 whereby t denotes the value of the
observed test statistic. An application of the bootstrapping
procedure for single tetrad tests, however, needs to account for
the distribution of T under H0 which is the null distribution of T.
This distribution provides the basis for determining the p-value.
When the null distribution is unknown, an assumption that the
test statistic is asymptotically normal is common. Bootstrapping
provides a non-parametric alternative but must account for the
problem that the generation of the data follows the alternative
hypothesis H1: θ≠θ0. An examination of the statistical cor-
respondence between tests of significance and confidence
intervals when the null hypothesis concerns a particular param-
eter value allows addressing this problem. Bootstrapping con-
fidence intervals is an appropriate approach for this purpose
(Davison and Hinkley, 1997; Efron and Tibshirani, 1993). The
corresponding approximate 1−α (two-tailed) confidence inter-
val for the bootstrap estimates of bias (bB) and variance (vB) is

t � bBFv1=2B z1�a=2: ð2Þ

Only if the corresponding (1−α) confidence interval
includes (or does not include) the parameter value θ0, an
acceptance (or rejection) of a null hypothesis H0: θ=θ0 at a
given level α is adequate. The bias correction of the bootstrap
confidence interval in Eq. (2) provides an appropriate means
to test the model-implied non-redundant vanishing tetrads in
CTA-PLS.

Step 5 concludes with an assessment of the conformity of a
reflective indicator specification with the empirical data. A
reflective measurement model does not conform to the
empirical data if at least one of the model-implied vanishing
tetrads is significantly different from zero. CTA-PLS employs a
procedure for testing n hypotheses H1, H2…, Hi with test
statistics T1, T2…, Ti for a single measurement model. Each
single tetrad test bases on an experiment-wise significance level
that is smaller than a specific value α. A multiple tetrad testing
problem, however, exists in that some of the tests might be
significant by chance (Glymour et al., 1987, p. 103). Thus, to
account for multiple testing issues, the probability of rejecting
the null hypothesis requires adjustment. “Perhaps the simplest
correction for this problem is a Bonferroni adjustment” (Bollen,
1990, p. 88), which consists of rejecting Hi, for any i=1,…, n, if
the associated test statistic Ti is significant at the α′=α /n
adjusted level of the test, where n is the number of hypotheses
to be tested. “If we have, for example, 10 vanishing tetrads to
test, and we wish the α level for the group of hypotheses to be
maintained at no more than a 0.05 significance level, then for
each individual test we should use a critical value that cor-
responds to an α level of 0.005 (=0.05/10)” (Bollen, 1990, p.
88). CTA-PLS uses the Bonferroni method to address multiple
testing issues and, thereby, adjusts the α level of the confidence
intervals for testing the model-implied vanishing in Eq. (2). The
procedure concludes with a sensitivity analysis which provides
additional assurance that the tetrad substitution does not affect
the initial statistical test results and, thus, a reliable foundation
for evaluating the analytical results (Bollen and Ting, 2000).

4. CTA-PLS application using simulated data

A primary application of CTA-PLS to evaluate the mode of
measurement models in PLS path modeling employs a set of
simulated data. Albers and Hildebrandt (2006) present the ex-
perimental design which underlies this part of the study. These
authors use simulated data for a PLS path model with pre-
determined relationships in the inner model (Fig. 1) and a
correlation matrix (Table 2) with the following pattern:

• Manifest variables A1, A2, and A3 have high correlations
while A4 and A5 each have rather low correlations with all
other manifest variables in the measurement model of latent
variable A. However, A4 and A5 (A1, A2 and A3) have
significant (insignificant) correlations with the manifest vari-
ables in the outer models of the latent endogenous variables
E1 and E2.

• A similar pattern holds for the measurement model of the
latent exogenous variable B. Here, the manifest variables B4
and B5 have a high correlation value while the correlations
of these variables with the indicators of the latent variables
E1 and E2 are at a level which is close to zero. In contrast,
B1, B2, and B3 each have low correlation values with all
other manifest variables in this measurement model as well
as with the manifest variables of E1 and significant cor-
relations with the manifest variables of E2.

• The manifest variables in the measurement model of latent
variable C have relatively low to moderate correlations. Here,
the correlations of all five manifest variables with the indi-
cators of latent variable E2 (E1) are at a moderate level (at
a level which is close to zero).

The analytical purposes of this study require a modification
of the original correlation matrix. Absolute correlation values
of manifest variables in the outer models below 0.1 become
subject to a systematical increase in their absolute value by 0.1



Table 2
Correlation of manifest variables

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5 E11 E12 E13 E21 E22 E23

A1 1.00
A2 0.71 1.00
A3 0.72 0.65 1.00
A4 0.18 0.14 0.19 1.00
A5 −0.11 −0.15 −0.12 0.15 1.00
B1 0.02 0.03 −0.06 0.06 −0.03 1.00
B2 −0.02 0.03 0.08 0.08 −0.02 0.13 1.00
B3 −0.11 −0.12 −0.06 0.00 0.02 −0.11 0.15 1.00
B4 −0.13 −0.13 −0.09 −0.05 0.01 0.16 −0.15 0.20 1.00
B5 −0.08 −0.05 −0.02 −0.04 0.01 −0.11 0.18 0.16 0.56 1.00
C1 0.02 −0.03 0.00 0.06 0.00 −0.02 0.07 0.10 −0.05 −0.06 1.00
C2 0.01 0.07 −0.01 0.03 0.12 −0.03 −0.05 −0.02 0.06 −0.01 0.12 1.00
C3 −0.05 0.04 −0.06 0.07 0.00 0.07 0.02 0.01 0.01 −0.04 0.24 0.57 1.00
C4 0.03 0.07 −0.02 0.10 0.06 −0.02 −0.04 0.02 0.00 −0.05 0.29 0.49 0.53 1.00
C5 0.03 0.05 0.01 −0.01 0.01 0.05 −0.02 0.00 −0.02 −0.01 0.13 0.20 0.29 0.27 1.00
E11 0.06 0.06 0.05 0.54 0.61 0.15 0.14 0.19 −0.02 0.01 0.08 0.08 0.03 0.06 −0.02 1.00
E12 0.00 0.02 0.00 0.54 0.51 0.19 0.11 0.16 0.04 0.01 0.10 0.04 0.02 0.04 −0.01 0.85 1.00
E13 0.08 0.06 0.08 0.54 0.58 0.09 0.14 0.15 0.01 0.04 0.11 0.01 0.00 0.03 0.00 0.89 0.83 1.00
E21 0.06 0.07 0.04 0.33 0.30 0.29 0.31 0.36 0.02 0.04 0.33 0.37 0.39 0.42 0.32 0.58 0.53 0.55 1.00
E22 0.00 0.01 0.01 0.31 0.28 0.26 0.31 0.40 0.06 0.09 0.29 0.35 0.38 0.35 0.34 0.54 0.51 0.52 0.83 1.00
E23 0.05 0.05 0.01 0.35 0.35 0.29 0.31 0.40 0.03 0.07 0.35 0.37 0.41 0.39 0.36 0.63 0.57 0.58 0.88 0.86 1.00

Table 3
PLS path modeling results for experimental data

Manifest
variables

Mode of outer models

Reflective (loadings) Formative
(weights)

Reflective
(loadings)

A B C E1 E2 A B C E1 E2

A1 0.50 0.08
A2 0.45 0.15
A3 0.52 0.11
A4 0.71 0.67
A5 0.61 0.67
B1 0.47 0.57
B2 0.63 0.46
B3 0.68 0.63
B4 0.09 0.09
B5 0.08 0.05
C1 0.55 0.44
C2 0.71 0.25
C3 0.81 0.21
C4 0.79 0.20
C5 0.51 0.44
E11 0.97 0.97
E12 0.94 0.94
E13 0.96 0.96
E21 0.95 0.95
E22 0.94 0.94
E23 0.96 0.96

Latent variable Inner model weights

A→E1 0.80 0.85
B→E1 0.18 0.17
B→E2 0.44 0.43
C→E2 0.57 0.58
E1→E2 0.47 0.46

1243S.P. Gudergan et al. / Journal of Business Research 61 (2008) 1238–1249
(e.g., 0.08 to 0.18 or −0.01 to −0.11). This modification is
important because neither CTA-SEM nor CTA-PLS are
applicable for correlations or covariances close to zero in the
measurement model (Bollen and Ting, 2000). The CTA-PLS
results report of SmartPLS provides the percentage of
correlations with an absolute value of 0.1 or lower in a specific
measurement model. Experience cautions against the use of
CTA-PLS to assess a measurement model if more than three out
of twenty relevant correlations are at an absolute value level of
0.01 or less.

The SEPATH module of STATISTICA 7.1 (StatSoft, 2005)
generates data (300 cases) for manifest variables in compliance
with the given inner model relationships and the correlations of
manifest variables. Table 3 shows PLS path modeling outcomes
of the SmartPLS software application (Ringle et al., 2005)
which principally represent a replication of the results in Albers
and Hildebrandt's (2006) study.

The objective of applying CTA-PLS is to evaluate whether
the theoretical assumptions for PLS model estimations are
consistent with the data. Specifically, the results from CTA-PLS
assist in assessing the measurement model of latent variables
with respect to the experimental data. According to a-priori
assumptions and the correlation pattern, the latent exogenous
variables (A, B, and C) have a formative measurement model
whereas those of the latent endogenous variables (E1 and E2)
are reflective in this numerical example.

An implementation of CTA-PLS within the SmartPLS
software provides the basis for computing relevant statistics.
Table 4 presents the results of CTA-PLS computations (5000
bootstrap subsamples) using the simulated data. Testing the
mode of the measurement models at a given α=0.1 level
requires adjustments of the single model-implied non-redundant
tetrad bootstrap (two-tailed) confidence intervals for multiple
testing issues. At least for one of these tetrads in each of the
measurement models of the latent exogenous variables, the
Bonferroni-adjusted confidence interval does not include the
parameter value of the null hypothesis (H0: τ=0). The CTA-
PLS evaluation rejects H0 for these tetrads and, thus, cannot



Table 4
CTA-PLS results for experimental data

a Adjustment of the 90% bias corrected bootstrap (two-tailed) confidence interval (CI) limits uses the Bonferroni method to account for multiple testing issues.
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substantiate the reflective measurement of latent variables A, B,
and C. This result provides support for the formative mode
which complies with the design of the experiment. A sensitivity
check that consists of ten additional CTA-PLS analyses with
alternative orders of variables in the correlation matrices for
each measurement model confirms the previous finding. Fur-
thermore, the maximum variance inflation factor (VIF) in the
measurement models does not reach a critical value which is
an important issue to avoid multicollinearity problems when
selecting the formative mode. However, the composite relia-
bility ρc, one of the key evaluation criteria for the reflective
mode in PLS path modeling (Chin, 1998), is above the critical
value of 0.7 for the latent constructs A and C and, thus, affirms a
reliable reflective measurement. This finding provides further
evidence for the usefulness of CTA-PLS as an additional eval-
uation procedure for PLS path modeling results to uncover
potential measurement model misspecifications.

Each latent variable E1 and E2 has three indicators in a
reflective measurement model. In both cases, CTA-PLS analyses
the mode of the measurement model by using one manifest
variable from the measurement model of the other latent variable.
According to the results of this evaluation (Table 4), drawing on
5000 bootstrap subsamples and a subsequent sensitivity analysis,
the H0 parameter value is within the bias-corrected and
Bonferroni-adjusted bootstrap confidence intervals for all
model-implied non-redundant vanishing tetrads (acceptance of
H0). The CTA-PLS evaluation provides support for reflective
measurement models of latent variables E1 and E2. This
finding matches the design of the experimental data. The level
of single outer loading, the composite reliability ρc, and VIF
further support the conclusion from the CTA-PLS assessment.
In applying CTA-PLS to simulated data with an underlying
experimental design, CTA-PLS reliably identifies the operatio-
nalizations of measurement models for latent exogenous vari-
ables. The results substantiate the appropriateness of CTA-PLS
for evaluating whether or not empirical data support a formative
indicator specification against a reflective indicator specifi-
cation in PLS path modeling. In conclusion, CTA-PLS re-
presents a complementary procedure for the catalogue of criteria
for evaluating the mode of measurement models in PLS path
modeling.

5. CTA-PLS application using empirical data

This illustration draws on the European customers satisfac-
tion index (ECSI) which national studies for different product
and service categories employ to assess customer satisfaction
via similar PLS path models (e.g., Hackl and Westlund, 2000).
The ECSI represents an adaptation of the Swedish customer
satisfaction barometer (Fornell, 1992) and is compatible with
the American customer satisfaction index (ACSI; Fornell et al.,
1996). Tenenhaus et al. (2005) present the ECSI path model,
which focuses on the mobile phone industry, and provide the
empirical data for this CTA-PLS application. The inner path
model includes seven latent variables. All outer models use a
reflective indicator specification. Fig. 2 shows the path model
and SmartPLS computational estimates.

The inner ECSI path model draws on existing theory (Fornell
et al., 1996) and empirical substantiation. Notwithstanding
those findings, this conception has been subject to continuous
discussions and alterations (e.g., Johnson et al., 2001). Little
debate concerns the mode of measurement models. While the



Fig. 2. ECSI example for mobile phone users.
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reflective outer mode might be a reasonable operationalization
in the initial ECSI model applications, their suitability is not
unmistakable when one tests a potentially varied path model
or applies altered manifest variables in similar or unrelated
contexts. ECSI studies across divergent industries apply re-
flective measurement models (e.g., Eskildsen et al., 2004;
Grønholdt et al., 2000) without addressing their appropriate-
ness. This lack of consistency with regard to path model
variation, manifest variable adaptation, and the research con-
texts suggests that ECSI studies require more reasoning with
respect to the choice of reflective indicators to avoid measure-
ment model misspecification (Jarvis et al., 2003). An evaluation
of the outer relationships using CTA-PLS can assist in exam-
ining the theoretical assumptions with respect to the empirical
data.

In the ECSI model on the mobile phone industry (Fig. 2),
Complaints represents a single indicator construct. The outer
relationship has a value of 1.00 regardless of whether the mea-
surement model uses the formative or reflective mode. Thus,
the CTA-PLS analysis does not include the latent variable
Complaints. Moreover, each measurement model of the latent
variables Expectation, Loyalty, Satisfaction, and Value in-
cludes less than four manifest variables. Thus, carrying out the
CTA-PLS procedure requires adding manifest variables from
measurement models of other latent variables and reducing the
number of model-implied vanishing tetrads (Table 1). For
example, with respect to the inclusion of manifest variables
CUSA1 and CUSA2 in the measurement model of latent var-
iable Value, the evaluation only uses a single model-implied
vanishing tetrad.

Table 5 presents the results from the CTA-PLS computations
(5000 bootstrap subsamples). For at least one model-implied
non-redundant vanishing tetrad in each of the measurement
models with one exception, the parameter value of H0: τ=0 is
not in the bias-corrected 90% (two-tailed) Bonferroni-adjusted
confidence interval. In these cases, CTA-PLS rejects H0 and,
thus, does not give evidence for the reflective measurement
model specification. A sensitivity analysis confirms this
finding. The only exception is the evaluation of the latent
variable Loyalty. Correlations of 0.05, 0.10, and 0.54 among the
three manifest variables are at least in one case too close to zero
to reasonably apply CTA-PLS. The correlation pattern supports
the assumption that the manifest variables are independent
determinants which form the latent construct.

In contrast, an evaluation of the outer measurement results
in this example using Chin's (1998) catalogue of criteria for PLS
path modeling would support the reflective models. The
composite reliability ρc, for example, is above the level of 0.7
for all latent variables. However, regarding the individual item
reliability, the standardized loadings should be above 0.7. Only
one indicator, CUSL2, in the measurement model of Loyalty does
not fulfill these requirements. This manifest variable has an outer
loading of 0.20 and is a candidate for omission in a scale
purification process. However, before omitting manifest vari-
ables, one can carry out CTA-PLS analysis to reject or maintain
the reflective measurement operationalization. As variance
inflation is not at a critical level in any of the measurement
models, the analysis entails an alteration of the initial assumptions
in that themanifest variables represent formative cause indicators.
Fig. 3 presents the revised path model and PLS estimates.

Two findings are evident with regard to the analysis. First,
the inner path model estimates do not change significantly when
all measurement models have a formative instead of a reflective
mode. Second, contrary to a-priori assumption, the manifest
variables appear to be cause indicators at distinctive levels in
formative measurement models. This provides a foundation on
which to analyze the particular relevance of each indicator to
explain the latent variable. Most importantly, the peculiarities of



Table 5
CTA-PLS results for ECSI data

a Adjustment of the 90% bias corrected bootstrap (two-tailed) confidence interval (CI) limits uses the Bonferroni method to account for multiple testing issues.
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the CTA-PLS analysis of the empirical data can assist in
developing persuasive explanations in situations where theore-
tical indicator specifications do not fit the observations. The
ECSI data provide a suitable basis for analyzing whether the
operationalization of manifest variables in the outer models is
subject to misspecification or not. The criteria that Jarvis et al.
(2003) suggest to determine whether a measurement model
should have formative or reflective indicators are useful for this
purpose. A persuasive example is the latent variable Quality that
employs the following manifest variables (Tenenhaus et al.,
2005, p. 162): a) “Overall perceived quality”, (b) “Technical
quality of the network”, (c) “Customer service and personal
advice offered”, (d) “Quality of the services you use”, (e)
“Range of services and products offered”, (f) “Reliability and
accuracy of the products and services provided”, (g) “Clarity
and transparency of information provided”. Consistent with an
examination of decision rules for determining whether a
construct is formative or reflective (Jarvis et al., 2003), these
manifest variables are rather independent with defining
characteristics that form the latent construct. Consequently,
contrary to a-priori assumptions, the measurement model
should use a formative indicator specification.

The application of CTA-PLS to this set of empirical data
and path model demonstrates how the method can contribute to
evaluating whether empirical data support a formative indicator
specification against a reflective indicator specification in PLS
path modeling. Contrary to the initial assumptions, based on the
CTA-PLS results, the procedure suggests making an alteration
to the measurement models from the reflective to the formative
mode. In the example of the latent variable Quality, applying
qualitative decision rules (Jarvis et al., 2003) to examine the
underpinnings of the specifications provides ex post support for
formative measurement models from a theoretical point of view.

6. Conclusion

This paper proposes an evaluation of measurement models
applying CTA, in compliance with PLS path modeling as-
sumptions, and demonstrates the application of CTA-PLS em-
ploying experimental as well as empirical data. The integrative
CTA-PLS assessment is consistent with multivariate general-
izability theory and offers a basis for drawing inferences about
the two contending perspectives as well as for balancing con-
ceptual rigor and empirical evaluation of the mode of measure-
ment models. This approach for measurement model assessment
in PLS path modeling includes three components: (a) an initial
theoretical a-priori specification of the measurement model,
(b) the integrative CTA-PLS evaluation of measurement



Fig. 3. Revised ECSI example for mobile phone users.
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models applying CTA in a manner that is consistent with PLS
path modeling assumptions, and (c) the straightforward
application of the SmartPLS software that includes the CTA-
PLS module.

Although CTA-PLS would typically follow an initial theo-
retical consideration to confirm or disconfirm the appropriateness
of formative or reflective measurement models, the method
might, however, also precede a posterior re-examination in
a manner similar to the theoretical a-priori specification which
may be undertaken to assess a possible misspecification of
measurement models. A-priori theoretical specification and
posterior re-examination along with empirical data are essential
steps in understanding the structure of the measurement models.
CTA-PLS can disconfirm the appropriateness of a reflective
measurement model and, thus, can provide support for a for-
mative indicator specification. But CTA-PLS does not include
conclusive verification with respect to the completeness of
the formativemeasurementmodel that covers the entire domain of
the construct, meaning that the indicator variables should
collectively represent all dimensions of the construct with no
overlap. Notwithstanding, CTA-PLS represents a valuable ap-
proach to expand the statistical tests in PLS pathmodeling that, in
particular, do not offer much support to evaluate the appropriate-
ness of formative measurement models. The methodology allows
substantiating the direction of outer relationships with respect to
empirical data but switching the mode of measurement models
(e.g., from a reflective one to a formative one) without further
consideration, however, does not represent the concluding result
of a CTA-PLS analysis, unless additional supporting theoretical
or conceptual reasoning provides clarification.

CTA-PLS is similar in principle to the approach that Bollen
and Ting (2000) propose for CTA-SEM and includes the
following steps: (1) Form and compute all vanishing tetrads for
the measurement model of a latent variable; (2) identify model-
implied vanishing tetrads; (3) eliminate redundant model-
implied vanishing tetrads; (4) perform a statistical significance
test for each remaining vanishing tetrad; and (5) evaluate results
by accounting for the relevant set of multitude tests. While
comparable, the conceptualization of CTA-PLS in this paper
differs fromCTA-SEM in Step 2, in Step 4, and in Step 5. In Step
2, representing a minor variation, methodological assumptions
noticeably reduce the range of possible model-implied vanishing
tetrads in PLS path modeling. Step 4 involves a similar single
tetrad significance assessment but contrary to the CTA-SEM
procedure, CTA-PLS employs a bootstrapping routine to carry
out an appropriate statistical test in the PLS methodological
context. The bias corrected bootstrap (two-tailed) 1−α con-
fidence interval, which the Bonferroni method adjusts in order to
account for multiple testing issues allows accepting or rejecting
H0 for every model-implied non-redundant vanishing tetrad at a
given α level. The CTA-PLS approach is implemented as a new
module in the software application SmartPLS (Ringle et al.,
2005). Thereby, PLS path modeling offers a tetrad test for
evaluating the mode of the measurement model, formative or
reflective, as Bollen and Ting (2000) suggest.

The findings from both, the application of CTA-PLS to
experimental data and to empirical data, demonstrate the
usefulness of CTA within the context of PLS path modeling.
To reiterate, imprudent minor or significant variations of path
models, changes regarding the blocks of manifest variables
and the direction of outer relationships without accounting for
theoretical underpinnings as well as applications to alternative
contexts can lead to an inappropriate utilization of measure-
ment models and, consequently, require additional reasoning
with respect to the choice of the reflective or formative mode
to avoid measurement model misspecification. These issues
become particularly relevant for explorative PLS path modeling
analyses and those applications which lean on weak theoretical
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and conceptual grounds. Hence, the correct specifications of
outer models in general, and formative ones in particular, are
of great importance in PLS path modeling. The CTA-PLS
approach provides a basis for assessing whether empirical data
support a formative indicator specification against a reflective
indicator specification. Consequently, this paper provides a con-
tribution which can assist in avoiding measurement model
misspecification and resultant issues that are critical for the
interpretation of PLS path model estimations. This posterior re-
examination following the CTA-PLS analysis, which “aims to
test whether a prespecified model is consistent with a data set”
(Rigdon, 2005, p. 1940), can build on Diamantopoulos and
Winklhofer's (2001) approach to index construction, the cri-
teria put forward by Jarvis et al. (2003), and Rossiter's (2002)
C-OAR-SE procedure. Moreover, this research complements
prior works regarding specification analysis and search for
inner path model relationships in PLS (c.f. Marcoulides, 2003;
Marcoulides and Drezner, 2003).

As a final point, future research may extend CTA-PLS beyond
evaluating the mode of measurement models. An alternative
simultaneous CTA test statistic (Bollen and Ting, 1998, 2000)
allows evaluating the overall fit of model structures. Hence, the
CTA test statistic could provide a method for testing the fit of a
model thatmight also link PLS pathmodelingwithCBSEM, even
though the issue does not concern whether to use formative or
reflective indicators. The simultaneous test statistic is consistent
with and complements the CBSEM procedure and provides
similar outcomes in comparison to the test statistic that results
from CBSEM when applying the weighted least squares (WLS)
method (Bollen and Ting, 1993). Besides discussing certain
exceptions, Bollen and Ting (2000) use a numerical example to
demonstrate that this consistency usually holds for the typical case
of reflective measurement models. Unlike conventional CBSEM,
PLS path modeling does not aim to test a model in the sense of
evaluating discrepancies between empirical and model-implied
covariance matrices. Eluding assumptions about data distribu-
tions or even sample size, PLS does not produce an overall test
statistic like conventional SEM's χ2 (Rigdon, 2005). Future
research can focus the issue of simultaneous tetrad testing within
the PLS path modeling context. Advances in this area may
provide a basis for using the overall CTA fit statistic as an
extension to the limited number of criteria that are currently
available for assessing PLS model fit. Thus, notwithstanding the
usefulness of applyingCTAwithin the PLS pathmodeling context
to assist in assessing the formative or reflective mode of
measurement models, further research into the relevance of the
CTA test statistic within PLS could lead to developing a method
for testing the fit of the path model.
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